Roots in prime modulus arithmetic Lecture 9d: 2022-03-16
 MAT A02 - Winter 2022 - UTSC
 Prof. Yun William Yu

Reversing is hard

- We define addition, multiplication, exponentiation, etc.

https://www.flickr.com/photos/nenadstojkovic/50446472706/in/photostream/
- Subtraction, division, and roots, are reversing those operations and sometimes much harder.

Division using multiplication table

\mathbf{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{0}$	0	0	0	0	0	0	0
$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5	6
$\mathbf{2}$	0	2	4	6	1	3	5
$\mathbf{3}$	0	3	6	2	5	1	4
$\mathbf{4}$	0	4	1	5	2	6	3
$\mathbf{5}$	0	5	3	1	6	4	2
$\mathbf{6}$	$\mathbf{0}$	6	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$

- Multiplication table encodes all pairs of products, so you can just look for the reverse.
- Example: $\frac{2}{5}(\bmod 7)$

Need x st. $\times 5 \equiv 2 \bmod 7$

$$
\Rightarrow \quad \frac{2}{5} \equiv 6 \text { mod } 7
$$

Roots using powers table

	$x^{\mathbf{0}}$	$x^{\mathbf{1}}$	\boldsymbol{x}^{2}	$x^{\mathbf{3}}$	$\boldsymbol{x}^{\mathbf{4}}$	$\boldsymbol{x}^{\mathbf{5}}$	$\boldsymbol{x}^{\mathbf{6}}$	$\boldsymbol{x}^{\mathbf{7}}$	$x^{\mathbf{8}}$	$\boldsymbol{x}^{\mathbf{9}}$	$\boldsymbol{x}^{\mathbf{1 0}}$	$x^{\mathbf{1 1}}$	$\boldsymbol{x}^{\mathbf{1 2}}$	$x^{\mathbf{1 3}}$
\mathbf{m}	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\mathbf{2}$	1	2	4	1	2	4	1	2	4	1	2	4	1	2
$\mathbf{3}$	1	3	2	6	4	5	1	3	2	6	4	5	1	3
$\mathbf{4}$	1	4	2	1	4	2	1	4	2	1	4	2	1	4
$\mathbf{5}$	1	5	4	6	2	3	1	5	4	6	2	3	1	5
$\mathbf{6}$	1	6	1	6	1	6	1	6	1	6	1	6	1	6

- A square root of a is a number b such that $b^{2} \equiv a$.
E... $\sqrt{2}=3$ or 4 .

$$
\begin{aligned}
& 3^{2} \equiv 9 \equiv 2 \bmod 7 \\
& 4^{2} \equiv 16 \equiv 2 \text { not } 7
\end{aligned}
$$

- An k th root of a is a number b such that $b^{k} \equiv a$.

Ex, $\quad \sqrt[5]{2} \equiv 2^{\frac{1}{5}} \equiv 4$

$$
\begin{array}{rlr}
4^{\prime} \equiv 4 & 4^{5} \equiv 4^{4} \cdot 4^{\prime} \\
4^{2} \equiv 16 \equiv 2 & \equiv 4.4 \\
4^{4} \equiv 4 & \equiv 16 \equiv 2 \mathrm{rod}_{7}
\end{array}
$$

Roots using powers table

$\bmod 7$| | $x^{\mathbf{0}}$ | $\boldsymbol{x}^{\mathbf{1}}$ | $\boldsymbol{x}^{\mathbf{2}}$ | $\boldsymbol{x}^{\mathbf{3}}$ | $\boldsymbol{x}^{\mathbf{4}}$ | $\boldsymbol{x}^{\mathbf{5}}$ | $x^{\mathbf{6}}$ | $\boldsymbol{x}^{\mathbf{7}}$ | $x^{\mathbf{8}}$ | $x^{\mathbf{9}}$ | $x^{\mathbf{1 0}}$ | $\boldsymbol{x}^{\mathbf{1 1}}$ | $x^{\mathbf{1 2}}$ | $x^{\mathbf{1 3}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mathbf{2}$ | 1 | 2 | 4 | 1 | 2 | 4 | 1 | 2 | 4 | 1 | 2 | 4 | 1 | 2 |
| $\mathbf{3}$ | 1 | 3 | 2 | 6 | 4 | 5 | 1 | 3 | 2 | 6 | 4 | 5 | 1 | 3 |
| $\mathbf{4}$ | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 |
| $\mathbf{5}$ | 1 | 5 | 4 | 6 | 2 | 3 | 1 | 5 | 4 | 6 | 2 | 3 | 1 | 5 |
| $\mathbf{6}$ | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 6 |

- How many answers for each of the following?
- $\sqrt[3]{5}$ no roots exist
- $\sqrt[3]{6}$ झ3, $5,6 \quad(3$ roots $)$
$\cdot \sqrt[5]{2} \equiv 4$
(1 root)
- $\sqrt[5]{3} \equiv 5$
(1 root)
A: 0
$\cdot \sqrt[13]{2} \equiv 2$
(1) root)

B: 1
C: 2
D: 3
E : None of the above

Think like a mathematician

- When do k th roots exist in $\bmod p$ arithmetic?
-When are k th roots unique? (only one root)

In mod 7 , th th roots always exist and are unique for

$$
k=1,5,7,11,13, \ldots
$$

Pattern recognition

- We can write out tables for small primes, look at all columns with all numbers, and try to find a pattern.
- Numbers k such that we can always find k th roots $\bmod p$:
- Mod 5: 1, 3, 5, 7, (9, 11, 13, 15, ...
- Mod 7: 1, 5, 11, 13, 17, 19, 23, ...
- Mod 11: 1, 3, 7, 9, 13, 17, 19, 21, ...
- Mod 13: 1, 5, 7, 11, 13, 17, 19, 23, (25, ...
- Can you spot the pattern?

A: Numbers are all odd numbers
B: Numbers are all prime numbers
C: Numbers are relatively prime to p
D: Numbers are relatively prime to $p-1$
E: None of the above

Prime modulus facts $(\bmod p)$

- You can uniquely divide by any number except 0 .

$\frac{2}{5} \bmod 7$	$1=5-2 \cdot 2$	$\frac{1}{5} \equiv 3 \bmod 7$
$7=5 \cdot 1+2$	1	$=5-(7-5) \cdot 2$
$5=2 \cdot 2+1$	1	$=5 \cdot 3-7 \cdot 2$
$2=2.1$	$1 \equiv 5 \cdot 3$ mad 7	

- Fermat's little theorem: $a^{p-1} \equiv 1(\bmod p)$ if $a \not \equiv 0$.

$$
\begin{aligned}
& 2^{6} \equiv 1 \text { nod } 7 \\
& 2^{600} \equiv\left(2^{6}\right)^{100} \equiv 1 \text { mod } 7 \\
& 2^{602} \equiv 2^{600+2} \equiv 2^{2} \equiv 4 \text { mod } 7
\end{aligned}
$$

Square roots

- In ordinary arithmetic, which of the following numbers is a square root of 1024 ? (without using a calculator?)

A: 25
B: 30
C: 32
D: 40
E: None of the above

- What if I told you $1024=2^{10}$? Then which of the following is a square root of 1024 ?

A: 5^{2}

$$
2^{10}=\left(2^{10}\right)^{\frac{1}{2}}=2^{5}=32
$$

B: $2 \cdot 3 \cdot 5$
C: 2^{5}
D: $2^{3} \cdot 5$
E: None of the above

Square roots in mod 7

- In mod 7 arithmetic, what is the square root of 2?
- What if I told you $2 \equiv 1024 \equiv 2^{10}$? Then which of the following is a square root of 2 ?

$$
\Rightarrow \begin{array}{ll}
2^{5} \cdot 2^{5} \equiv 2^{10} \\
& \sqrt{2^{10}} \equiv 2^{5} \\
\sqrt{2} \equiv \sqrt{2^{10}} \equiv 2^{5} \equiv 32 \equiv 4 \bmod 7 \begin{array}{l}
\text { A:1 } \\
\text { B:2 } \\
\text { Ci } \\
\text { CiA } \\
\text { E: None of the above }
\end{array}
\end{array}
$$

- What if I told you $2 \equiv 9 \equiv 3^{2}$? Then which of the following is a square root of 2 ?

$$
\sqrt{2} \equiv \sqrt{9} \equiv 3 \mathrm{~mol} \text { 子 }
$$

A: 1
B: 2
Ci)

D: 4
E : None of the above

Higher roots

- In mod 7 arithmetic, what is the fifth root of 2 ?
- Strategy: use Fermat's little theorem to find an equivalent of 2 as a power whose exponent is a multiple of 5 .

$$
\begin{gathered}
\sqrt[5]{2} \text { Fermat's Little Tho: } \\
2^{6} \equiv 1 \\
\Rightarrow 2 \equiv 2 \cdot 1 \equiv 2^{6} \cdot 2^{6} \equiv 2^{7} \\
2 \equiv 2^{7} \equiv 2^{13} \equiv 2^{19} \equiv 2^{25} \\
\sqrt[5]{2} \equiv 2^{\frac{1}{5}} \equiv\left(2^{25}\right)^{\frac{1}{5}} \equiv 2^{5} \equiv 32 \equiv 4 \operatorname{mad} 7 .
\end{gathered}
$$

Ex. to clack: $4^{5} \equiv 2$ mod 7

Try it out

- In mod 7 arithmetic, what is a $5^{\text {th }}$ root of 3 ?

$$
\begin{aligned}
& 3^{6} \equiv 1 \text { So, } \\
& 3^{1} \equiv 3^{7} \equiv 3^{13} \equiv 3^{19} \equiv 3^{25}
\end{aligned}
$$

Thus, $3=3^{25}$

$$
\begin{aligned}
& \text { Thus, } \begin{aligned}
& \begin{aligned}
25 \cdot \frac{1}{5} & 3^{5} \equiv 3^{4} \cdot 3 \\
& \equiv 4 \cdot 3 \equiv 12 \equiv 5
\end{aligned} \\
& 3^{1} \equiv 3
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 3^{1} \equiv 3 \\
& 3^{2} \equiv 9 \equiv 2 \\
& 3^{4} \equiv 4
\end{aligned}
$$

Backwards reasoning for finding roots

- To solve $\sqrt[k]{a}(\bmod p)$, we need to find a number b such that $b^{k} \equiv a(\bmod p)$.

Ex. $\sqrt[3]{2} \bmod$!. An: $7^{3} \equiv 343=2 \bmod / \prime$

- One way to attempt this is to see if there exists a power m such that $b \equiv a^{m}$.
- That works precisely when $a^{m k} \equiv a(\bmod p)$

$$
\begin{gathered}
2^{7 \cdot 3} \equiv 2^{21} \equiv 2\left(\bmod (1) \text { because } 2^{10} \equiv 1 .\right. \\
2 \equiv 2^{11} \equiv 2^{21}
\end{gathered}
$$

When does that strategy work?

- We need $a^{k m} \equiv a(\bmod p)$.
- Or in other words, we need an exponent that is a multiple of k such that the two are equivalent.
- Fermat's Little Theorem says that

$$
\begin{aligned}
& 1 \equiv a^{(p-1) l} \\
& a \equiv a^{(p-1) l+1}
\end{aligned}
$$

- Equivalently, need to find integers m and l such that

$$
m k=l(p-1)+1
$$

- We can rewrite this as:

$$
1=m \underline{k}-l(p-1)
$$

- Or, in other words, the strategy works if 1 is a combination of k and $p-1$, which is true precisely when $\operatorname{gcd}(k, p-1)=1$ (relatively prime)

One algorithm for $b \equiv \sqrt[k]{a} \bmod p$

- This algorithm works if
- p is prime

$$
\} \text { required fur Fermat's }
$$

- $a \neq 0 \bmod p$
- k is relatively prime to $p-1 \leftarrow$ neeleb to find a linear combo fir 1
- Find $1_{3}=m k-l(p-1)$ using reverse Euclidean alg

$$
\text { E. } \begin{array}{ccc}
\sqrt[3]{3} \bmod 11 & 10 & =3.3+1 \\
\operatorname{sad}(3,10) & 1 & =10-3.3 \\
k x_{p-1} &
\end{array}
$$

$$
1=\underbrace{(-3)}_{m} \cdot \underbrace{j}_{k}-\underbrace{(-1)}_{l} \cdot \underbrace{10}_{p-1}
$$

- Then $\sqrt[k]{a} \equiv a^{m} \bmod p$. Solve for $b \equiv a^{m} \bmod p$.

$$
\begin{aligned}
& b \equiv 3^{-3} \equiv 3^{-3+10} \equiv 3^{7 \bmod } 11 \equiv 3 \cdot 3^{2} \cdot 3^{4} \\
& 3 \equiv 3 \\
& \begin{array}{l}
3^{2} \equiv 9 \\
3^{4} \equiv 81 \equiv 4
\end{array} \\
& \text { - Check that } b^{k} \equiv a(\bmod p) \\
& 9^{3} \equiv 3 \mathrm{~mol} \mathrm{Ht}
\end{aligned}
$$

Worked example

- $\sqrt[5]{10} \bmod 13$

Find 1 as combo of $5 \& 12$

$$
\begin{aligned}
& 10^{\prime} \equiv 10 \\
& 10^{2} \equiv 100 \equiv 9 \text { mud } 13 \\
& 10^{4} \equiv 81 \equiv 3
\end{aligned}
$$

$$
\begin{aligned}
10^{5} & \equiv 10^{4} \cdot 10 \equiv 3 \cdot 10 \\
& \equiv 30 \equiv(4 \bmod 13
\end{aligned}
$$

Check: $\quad 4^{5} \equiv 10 \mathrm{mod} 13$

$$
4^{\prime} \equiv 4
$$

$$
4^{2} \equiv 16=3
$$

$$
4^{4}=9
$$

$4^{5} \leq 9 \cdot 4 \equiv 3^{6} \equiv 10 \bmod (3$

$$
\begin{aligned}
& 12=5 \cdot 2+2 \\
& 5=2.2+1 \\
& 2=2.1 \\
& 1=5.2 \cdot 2 \\
& 1=5-2 \cdot(12-5 \cdot 2) \\
& 1=5.5-12 \cdot 2
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[5]{10}=10^{5} \bmod 13 \\
& 10^{29}=10^{12.2+1} \equiv 10^{1} \mathrm{mols}
\end{aligned}
$$

Try it out

- Let p be prime, and $\operatorname{gcd}(k, p-1)=1$.
- Given $b=\sqrt[k]{a}(\bmod p)$, find $1=\underset{\tau}{m} k-l(p-1)$.
- Solution $b=a^{m}$
- Solve: $\sqrt[3]{6} \bmod 17$

Try it out

- Let p be prime, and $\operatorname{gcd}(k, p-1)=1$.
- Given $b=\sqrt[k]{a}(\bmod p)$, find $1=m k-l(p-1)$.
- Solution $b=a^{m}$
- Solve: $\sqrt[4]{6} \bmod 17$

Does't wort since $\operatorname{gad}(4,16)=4$.

A: 2
B: 3
C: 4
D: 5
E: None of the above

