Roots in prime modulus arithmetic Lecture 9d: 2022-03-16

MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

Reversing is hard

 We define addition, multiplication, exponentiation, etc.

 Subtraction, division, and roots, are reversing those operations and sometimes much harder.

https://www.flickr.com/photos/nenadstojkovic/50446472706/in/photostream/

Floris de Wit; https://dribbble.com/shots/5039546-Moonwalk

Division using multiplication table

X mod 7

• Multiplication table encodes all pairs of products, so you can just look for the reverse.

• Example:
$$\frac{2}{5} \pmod{7}$$
 Need $\times 5.1. \times 5 = 2 \mod{7}$

$$\frac{7}{5} = 6 \quad \text{mod } 3$$

Roots using powers table

		x^0	x^1	χ^2	x^3	<i>x</i> ⁴	χ^5	<i>x</i> ⁶	x ⁷	<i>x</i> ⁸	<i>x</i> ⁹	x ¹⁰	x ¹¹	x^{12}	x^{13}
mod 7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	2	4	1	2	4	1	2	4	1	2	4	1	2
	3	1	3	2	6	4	5	1	3	2	6	4	5	1	3
	4	1	4	2	1	4	2	1	4	2	1	4	2	1	4
	5	1	5	4	6	2	3	1	5	4	6	2	3	1	5
	6	1	6	1	6	1	6	1	6	1	6	1	6	1	6

• A square root of
$$a$$
 is a number b such that $b^2 \equiv a$.

Since a is a number a such that a is a number a such that a is a number a such that a is a number a is a number

• An kth root of a is a number b such that $b^k \equiv a$.

Roots using powers table

		x^0	x^1	x^2	x^3	x^4	<u>x</u> ⁵	<i>x</i> ⁶	x ⁷	<i>x</i> ⁸	<i>x</i> ⁹	x ¹⁰	x ¹¹	x^{12}	x^{13}
mod 7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	2	4	1	2	4	1	2	4	1	2	4	1	2
	3	1	3	2	6	4	5	1	3	2	6	4	5	1	3
	4	1	4	2	1	4	2	1	4	2	1	4	2	1	4
	5	1	5	4	6	2	3	1	5	4	6	2	3	1	5
	6	1	6	1	6	1	6	1	6	1	6	1	6	1	6

How many answers for each of the following?

•
$$\sqrt[3]{5}$$
• $\sqrt[3]{6}$
= 3, 5, 1

• $\sqrt[5]{2}$
= 4

• $\sqrt[5]{3}$
= 5

(1 root)

• $\sqrt[13]{2}$
= 7

(1 root)

A: 0

B: 1

C: 2

D: 3

Think like a mathematician

- When do kth roots exist in mod p arithmetic?
- When are kth roots unique? (only one root)

		x^0	x^1	x^2	x^3	x^4	x^5	<i>x</i> ⁶	x^7	<i>x</i> ⁸	<i>x</i> ⁹	x^{10}	<i>x</i> ¹¹	χ^{12}	x^{13}
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
mod 7	2	1	2	4	1	2	4	1	2	4	1	2	4	1	2
	3	1	3	2	6	4	5	1	3	2	6	4	5	1	3
	4	1	4	2	1	4	2	1	4	2	1	4	2	1	4
	5	1	5	4	6	2	3	1	5	4	6	2	3	1	5
	6	1	6	1	6	1	6	1	6	1	6	1	6	1	6

In mod 7, kth roots always exist and are unique for t=1, 5, 7, 11, 13, ...

Pattern recognition

- We can write out tables for small primes, look at all columns with all numbers, and try to find a pattern.
- Numbers k such that we can always find kth roots mod p:
 - Mod 5: 1, 3, 5, 7, 9, 11, 13, 15, ...
 - Mod 7: 1, 5, 11, 13, 17, 19, 23, ...
 - Mod 11: 1, 3, 7, 9, 13, 17, 19, 21, ...
 - Mod 13: 1, 5, 7, 11, 13, 17, 19, 23, 25, ...
- Can you spot the pattern?

A: Numbers are all odd numbers

B: Numbers are all prime numbers

C: Numbers are relatively prime to p

D: Numbers are relatively prime to p-1

Prime modulus facts (mod p)

You can uniquely divide by any number except 0.

$$\frac{2}{5} \text{ mod } 7$$

$$1 = 5 - 2 \cdot 2$$

$$1 = 5 - (7 - 5) \cdot 2$$

$$5 = 3 \text{ mod } 7$$

$$5 = 2 \text{ mod } 7$$

$$5 = 3 \text{ mod } 7$$

• Fermat's little theorem: $a^{p-1} \equiv 1 \pmod{p}$ if $a \not\equiv 0$.

$$2^{6} = 1 \quad \text{m.l.} 7$$

$$2^{600} = (2^{6})^{100} = 1 \quad \text{m.d.} 7$$

$$2^{602} = 2^{600 + 2} = 2^{2} = 4 \quad \text{m.d.} 7$$

Square roots

 In ordinary arithmetic, which of the following numbers is a square root of 1024? (without using a calculator?)

A: 25

B: 30

C: 32

D: 40

E: None of the above

• What if I told you $1024 = 2^{10}$? Then which of the following is a square root of 1024?

$$\int 2^{10} = (2^{10})^{\frac{1}{2}} = 2^{5} = 32$$

A: 5²

 $B: 2 \cdot 3 \cdot 5$

D: $2^3 \cdot 5$

Square roots in mod 7

- In mod 7 arithmetic, what is the square root of 2?
- What if I told you $2 \equiv 1024 \equiv 2^{10}$? Then which of the following is a square root of 2?

• What if I told you $2 \equiv 9 \equiv 3^2$? Then which of the following is a square root of 2?

A: 1
B: 2
C: 3
D: 4
E: None of the above

Higher roots

- In mod 7 arithmetic, what is the fifth root of 2?
- Strategy: use Fermat's little theorem to find an equivalent of 2 as a power whose exponent is a multiple of 5.

Try it out

• In mod 7 arithmetic, what is a 5th root of 3?

$$3^{6} = 1$$
 5^{6} , $3^{12} = 3^{12} = 3^{12} = 3^{25}$

Thus, $3 = 3^{25} = 3^{25} = 3^{5} = 3^{4}$.

 $= 7 \quad 5 \quad 3 = 3^{25} = 3^{5} = 3^{4}$.

 $= 7 \quad 5 \quad 3 = 12 = 5$
 $= 7 \quad 4 \quad 3 = 12 = 5$
 $= 7 \quad 3^{12} =$

Backwards reasoning for finding roots

• To solve $\sqrt[k]{a} \pmod{p}$, we need to find a number b

such that $b^k \equiv a \pmod{p}$.

Ex. $3\sqrt{2}$ and 1. Av: $7^3 \equiv 343 \equiv 2$ and 1.

 One way to attempt this is to see if there exists a power m such that $b \equiv a^m$.

ower
$$m$$
 such that $b \equiv a^m$.

2, 4, 8, $\binom{1}{5}$, $\binom{10}{5}$, $\binom{20}{5}$, $\binom{18}{5}$, $\binom{1}{5}$, $\binom{10}{5}$, $\binom{$

• That works precisely when $a^{mk} \equiv a \pmod{p}$

$$2^{7.3} \equiv 2^{2'} \equiv 2 \pmod{11}$$
 because $2^{10} \equiv 1$.
 $2 \equiv 2'' \equiv 2^{21}$

When does that strategy work?

- We need $a^{km} \equiv a \pmod{p}$.
- Or in other words, we need an exponent that is a multiple of k such that the two are equivalent.
- Fermat's Little Theorem says that

$$1 \equiv a^{(p-1)l}$$
$$a \equiv a^{(p-1)l+1}$$

ullet Equivalently, need to find integers m and l such that

$$mk = l(p-1) + 1$$

We can rewrite this as:

$$1 = m\underline{k} - l(p-1)$$

• Or, in other words, the strategy works if 1 is a combination of k and p-1, which is true precisely when $\gcd(k,p-1)=1$ (relatively prime)

One algorithm for $b \equiv \sqrt[k]{a} \mod p$

- This algorithm works if
 - p is prime
 - $a \not\equiv 0 \mod p$
 - k is relatively prime to p-1 needed to find a linear combo for l

} requires for Fernat's

- Find 1 = mk l(p-1) using reverse Euclidean alg $l = \frac{3}{3}$ and $l = \frac{3}{3}$
- Then $\sqrt[k]{a} \equiv a^m \mod p$. Solve for $b \equiv a^m \mod p$. b $\equiv 3$ $\equiv 3$ 3 = 3 3² = 9 3⁴= 81 = 4
- Check that $b^k \equiv a \pmod{p}$ 9 3 \equiv 3 \longrightarrow //

Worked example

```
• \sqrt[5]{10} \mod 13
 Find 1 as combo of 5 & 12
   12 = 5 - 2 + 2
    5=2.2 +1
    2 = 2-1
   1 = 5 - 2 - 2
  1=5-2.(12-5.2)
  1=5.5-12.2
 1025 $ 10 2.21 = 10 md/s
```

$$10^{5} = 100 = 9 \quad \text{mad} \quad |3|$$

$$10^{4} = 81 = 3$$

$$10^{5} = 10^{4}, \quad |0 = 3| \cdot |0|$$

$$= 30 = 4 \quad \text{mod} \quad |3|$$

$$Clack: \quad 4^{5} = 10 \quad \text{mod} \quad |3|$$

$$4^{1} = 4 \quad 4^{2} = 16 = 3 \quad 4^{4} = 9$$

$$4^{5} = 9 \cdot 4 = 36 = (0 \quad \text{mod} \quad |3|$$

Try it out

- Let p be prime, and gcd(k, p-1) = 1.
- Given $b = \sqrt[k]{a} \pmod{p}$, find 1 = mk l(p-1).
- Solution $b = a^m$
- Solve: $\sqrt{6} \mod 17$ Find I as a combo of 3 + 16 $6^2 = 36 = 2$ 16 = 3.5 + 1 1 = 16 3.5 $1 = 3 \cdot (-5) 16 \cdot (-1)$ $6^4 = 4$ $6^8 = 16 = -1$ • Solve: $\sqrt[3]{6}$ mod 17

$$6^{2} = 6$$

$$6^{2} = 36 = 2$$

$$6^{4} = 4$$

$$6^{8} = 16 = -1$$

$$6^{11} = 6^{8} \cdot 6^{2} \cdot 6 = -1 \cdot 2 \cdot 6$$

$$= -12 = 5 \quad \text{mod } 17$$

A: 2

C: 4

Try it out

- Let p be prime, and gcd(k, p 1) = 1.
- Given $b = \sqrt[k]{a} \pmod{p}$, find 1 = mk l(p-1).
- Solution $b = a^m$
- Solve: $\sqrt[4]{6} \mod 17$

A: 2

B: 3

C: 4

D: 5