Roots in prime modulus arithmetic Lecture 9d: 2022-03-16

MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

Reversing is hard

• We define addition, multiplication, exponentiation, etc.

https://www.flickr.com/photos/nenadstojkovic/50446472706/in/photostream/

 Subtraction, division, and roots, are reversing those operations and sometimes much harder.

Floris de Wit; https://dribbble.com/shots/5039546-Moonwalk

Division using multiplication table

Χ	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

- Multiplication table encodes all pairs of products, so you can just look for the reverse.
- Example: $\frac{2}{5} \pmod{7}$

mod 7

Roots using powers table

		<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶	<i>x</i> ⁷	<i>x</i> ⁸	<i>x</i> ⁹	<i>x</i> ¹⁰	<i>x</i> ¹¹	<i>x</i> ¹²	<i>x</i> ¹³
mod 7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	2	4	1	2	4	1	2	4	1	2	4	1	2
	3	1	3	2	6	4	5	1	3	2	6	4	5	1	3
	4	1	4	2	1	4	2	1	4	2	1	4	2	1	4
	5	1	5	4	6	2	3	1	5	4	6	2	3	1	5
	6	1	6	1	6	1	6	1	6	1	6	1	6	1	6

• A square root of a is a number b such that $b^2 \equiv a$.

• An kth root of a is a number b such that $b^k \equiv a$.

Roots using powers table

		<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶	<i>x</i> ⁷	<i>x</i> ⁸	<i>x</i> ⁹	<i>x</i> ¹⁰	<i>x</i> ¹¹	<i>x</i> ¹²	<i>x</i> ¹³
mod 7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	2	4	1	2	4	1	2	4	1	2	4	1	2
	3	1	3	2	6	4	5	1	3	2	6	4	5	1	3
	4	1	4	2	1	4	2	1	4	2	1	4	2	1	4
	5	1	5	4	6	2	3	1	5	4	6	2	3	1	5
	6	1	6	1	6	1	6	1	6	1	6	1	6	1	6

• How many answers for each of the following?

- ³√5
- ³√6
- ⁵√2
- ⁵√3
- ¹³√2

- A: 0
- B: 1
- C: 2
- D: 3
- E: None of the above

Think like a mathematician

- When do kth roots exist in mod p arithmetic?
- When are kth roots unique? (only one root)

		<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶	<i>x</i> ⁷	<i>x</i> ⁸	<i>x</i> ⁹	<i>x</i> ¹⁰	<i>x</i> ¹¹	<i>x</i> ¹²	<i>x</i> ¹³
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	2	4	1	2	4	1	2	4	1	2	4	1	2
7	3	1	3	2	6	4	5	1	3	2	6	4	5	1	3
	4	1	4	2	1	4	2	1	4	2	1	4	2	1	4
	5	1	5	4	6	2	3	1	5	4	6	2	3	1	5
	6	1	6	1	6	1	6	1	6	1	6	1	6	1	6

mod 7

Pattern recognition

- We can write out tables for small primes, look at all columns with all numbers, and try to find a pattern.
- Numbers k such that we can always find kth roots mod p:
 - Mod 5: 1, 3, 5, 7, 9, 11, 13, 15, ...
 - Mod 7: 1, 5, 11, 13, 17, 19, 23, ...
 - Mod 11: 1, 3, 7, 9, 13, 17, 19, 21, ...
 - Mod 13: 1, 5, 7, 11, 13, 17, 19, 23, 25, ...
- Can you spot the pattern?
 - A: Numbers are all odd numbers
 - B: Numbers are all prime numbers
 - C: Numbers are relatively prime to p
 - D: Numbers are relatively prime to p-1
 - E: None of the above

Prime modulus facts (mod p)

• You can uniquely divide by any number except 0.

• Fermat's little theorem: $a^{p-1} \equiv 1 \pmod{p}$ if $a \not\equiv 0$.

Square roots

- In ordinary arithmetic, which of the following numbers is a square root of 1024? (without using a calculator?)
 - A: 25 B: 30 C: 32 D: 40 E: None of the above
- What if I told you $1024 = 2^{10}$? Then which of the following is a square root of 1024?

A: 5^2 B: $2 \cdot 3 \cdot 5$ C: 2^5 D: $2^3 \cdot 5$ E: None of the above

Square roots in mod 7

- In mod 7 arithmetic, what is the square root of 2?
- What if I told you $2 \equiv 1024 \equiv 2^{10}$? Then which of the following is a square root of 2?

A: 1 B: 2 C: 3 D: 4 E: None of the above

- What if I told you $2 \equiv 9 \equiv 3^2$? Then which of the following is a square root of 2?
 - A: 1
 - B: 2
 - C: 3
 - D: 4
 - E: None of the above

Higher roots

- In mod 7 arithmetic, what is the fifth root of 2?
- Strategy: use Fermat's little theorem to find an equivalent of 2 as a power whose exponent is a multiple of 5.

Try it out

• In mod 7 arithmetic, what is a 5th root of 3?

- A: 2 B: 3
- C: 4
- D: 5
- E: None of the above

Backwards reasoning for finding roots

• To solve $\sqrt[k]{a} \pmod{p}$, we need to find a number *b* such that $b^k \equiv a \pmod{p}$.

• One way to attempt this is to see if there exists a power m such that $b \equiv a^m$.

• That works precisely when $a^{mk} \equiv a \pmod{p}$

When does that strategy work?

- We need $a^{km} \equiv a \pmod{p}$.
- Or in other words, we need an exponent that is a multiple of k such that the two are equivalent.
- Fermat's Little Theorem says that

$$1 \equiv a^{(p-1)l}$$
$$a \equiv a^{(p-1)l+1}$$

• Equivalently, need to find integers *m* and *l* such that

$$mk = l(p-1) + 1$$

• We can rewrite this as:

$$1 = mk - l(p - 1)$$

• Or, in other words, the strategy works if 1 is a combination of k and p - 1, which is true precisely when gcd(k, p - 1) = 1 (relatively prime)

One algorithm for $b \equiv \sqrt[k]{a} \mod p$

- This algorithm works if
 - *p* is prime
 - $a \not\equiv 0 \mod p$
 - k is relatively prime to p-1
- Find 1 = mk l(p 1) using reverse Euclidean alg

• Then $\sqrt[k]{a} \equiv a^m \mod p$. Solve for $b \equiv a^m \mod p$.

• Check that $b^k \equiv a \pmod{p}$

Worked example

• $\sqrt[5]{10} \mod 13$

Try it out

- Let p be prime, and gcd(k, p 1) = 1.
- Given $b = \sqrt[k]{a} \pmod{p}$, find 1 = mk l(p 1).
- Solution $b = a^m$
- Solve: $\sqrt[3]{6} \mod 17$

е

Try it out

- Let p be prime, and gcd(k, p 1) = 1.
- Given $b = \sqrt[k]{a} \pmod{p}$, find 1 = mk l(p 1).
- Solution $b = a^m$
- Solve: $\sqrt[4]{6} \mod 17$

A: 2
B: 3
C: 4
D: 5
E: None of the above