Week 1: Integration Lecture 3: 2021-05-12
 MAT A35 - Summer 2021 - UTSC
 Prof. Yun William Yu

Average of a function

- Let $f:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ be a continuous function. Then its average value $y_{a v}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.

Ex $f(x)=x^{2}$. Find the average value between -1 and 1 .

$$
\begin{aligned}
y_{a v} & =\underbrace{\frac{1}{1-(-1)}}_{2} \int_{-1}^{1} x^{2} d x=\frac{1}{2}\left[\frac{1}{3} x^{3}\right]_{-1}^{1} \\
& =\frac{1}{6}\left[1^{3}-(-1)^{3}\right]=\frac{1}{3}
\end{aligned}
$$

Total area $=\frac{2}{3}$

Properties of definite integrals

- Constant multiplication: $\int_{a}^{b} k \cdot f(x) d x=k \cdot \int_{a}^{b} f(x) d x$

$$
\int_{0}^{1} 2 \cdot x d x=2 \int_{0}^{1} x d x
$$

- Sum of different integrands with same bounds
- $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$

$$
\int_{0}^{1}(1+x) d x=\int_{0}^{1} 1 d x+\int_{0}^{1} x d x
$$

- Sum of same integrand with touching bounds
- $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$ where $a<b<c_{\uparrow}$

$$
\int_{0}^{1} \sin x d x+\int_{1}^{2 \pi} \sin x d x=\int_{0}^{2 \pi} \sin x d x
$$

Try it out

$$
\begin{aligned}
\int_{0}^{2} x^{2} d x+\int_{0}^{2} 5 d x
\end{aligned} \underbrace{\int_{0}^{2}\left(x^{2}+5\right) d x}+\underbrace{\int_{1}^{3}\left(x^{2}+5\right) d x-\int_{1}^{2}\left(x^{2}+5\right) d x}_{\int_{2}^{3}\left(x^{2}+5\right) d x}
$$

A: 24
B: 27
C: 30
D: 33
E: None of the above

Area between curves
Let f and g be continuous functions, and suppose that $f(x) \geq$ $g(x)$ over the interval $[a, b]$. Then the area of the region between the two curves on that interval is $\int_{a}^{b}[f(x)-g(x)] d x$.

When $[a, b]$ are unknown, can compute the intersection points to figure out the area bounded by curves.

Example

- Find the area bounded by the graphs of $f(x)=2 x-2$ and $g(x)=x^{2}-2$.
Intersections when $f(x)=g(x) \Rightarrow x^{2}-2=2 x-2$

$$
\begin{aligned}
\Rightarrow & x^{2}-2 x=0 \\
\Rightarrow & x(x-2)=0 \\
& x=0,2 \\
\text { Area }= & \int_{0}^{2}[f(x)-g(x)] d x=\int_{0}^{2}\left(2 x-x^{2}\right) d x \\
= & {\left[x^{2}-\frac{1}{3} x^{3}\right]_{0}^{2}=4-\frac{8}{3}=\frac{4}{3} . }
\end{aligned}
$$

Try it out

- Find the area bounded by graphs of $f(x)=x^{2}$ and $g(x)=x$.
- Step 1: find the intersection points.

$$
\begin{aligned}
& x^{2}=x \quad \Rightarrow x=0,1 \\
& \Rightarrow x^{2}-x=0 \\
& x(x-1)=0
\end{aligned}
$$

```
A: -1,1
B: 0,2
C: -1,0
D: 0,1
E: None of the above
```

- Step 2: Decide which graph is on top.

$$
x>x^{2} \text { for } x \in[0,1] \text {. }
$$

$$
\text { Ato con check } f(0.5)=0.25<g(0.5)=0.5
$$

- Step 3: Compute the integral.

$$
\int_{0}^{1}\left[x-x^{2}\right] d x=\left[\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6} .
$$

E: None of the above

Chain rule \rightarrow Substitution rule

- Chain rule: Let $f=f(u)$ be a function of u and $u=u(x)$ be a function of x. Then $\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}$.

$$
\text { Ex. } \begin{array}{cc}
\frac{d}{d x}\left[(2 x+1)^{2}\right] & \text { Let } f(u)=u^{2}, \\
\frac{d f}{d u}=2 u \quad & \left.\begin{array}{l}
u(x)=2 x+1 \\
=2 u
\end{array}\right) \\
=2(2 x+1) \cdot 2=4(2 x+1) . &
\end{array}
$$

- "u-substitution" is the opposite of the chain rule.

$$
\text { Ex. } \begin{aligned}
& \int 4(2 x+1) d x \quad \text { let } \quad u=2 x+1 \\
= & \int 4 u \cdot \frac{1}{2} d u=\int 2 u d u \quad d u=2 d x \Rightarrow d x=\frac{1}{2} d u \\
= & u^{2}+C=(2 x+1)^{2}+C=4 x^{2}+4 x+1+C=4 x^{2}+4 x+C
\end{aligned}
$$

Substitution rule algorithm

- Step 1: Guess an appropriate u
- Step 2: Compute $d u, d x$, and x
- Step 3: Substitute in to get rid of all the x^{\prime} s
- Step 4: Integrate as a function of u
- Step 5: Convert back to x^{\prime} s

$$
\begin{array}{ll}
\int 2 x e^{x^{2}} d x & \begin{array}{l}
\text { hyperren! } \\
\text { infinitainols }
\end{array} \\
\text { 1. Let } u=x^{2} & \left(\begin{array}{l}
\frac{d}{d x} u=2 x \\
\frac{d u}{d x}=2 x \\
d u=2 x d x
\end{array}\right)
\end{array}
$$

$$
\text { 3. } \quad \int 2 x e^{x^{2}} d x=\int e^{u} d u
$$

$$
\frac{d}{d x}\left[e^{x^{2}}\right]=2 x e^{x^{2}}
$$

Example

$$
\begin{aligned}
& \int \frac{1}{1+x} d x \\
& \text { Let } u=1+x \\
& \frac{d u}{d x}=1 \\
& d u=d x \\
& d u=d x \\
& \int \frac{1}{u} d u=\ln |u|+C=\ln |1+x|+C \\
& \int 4 x \sqrt{x^{2}+1} d x \text {. Let } u=x^{2}+1 \\
& d u=2 x d x \\
& =\int 2 \sqrt{u} d u \\
& =\int 2 u^{\frac{1}{2}} d u=\frac{2}{3} \cdot 2 u^{\frac{3}{2}}+C=\frac{4}{3} u^{\frac{3}{2}}+C=\frac{4}{3}\left(x^{2}+1\right)^{\frac{3}{2}}+C
\end{aligned}
$$

Substitution for definite integrals

$$
\int_{a}^{b}\left(1+x^{2}\right) 2 x d x=\int_{x=a}^{x=b}\left(1+x^{2}\right) 2 x d x
$$

Let $u=1+x^{2}$

$$
\begin{gathered}
d u=2 x d x \\
=\int_{u=1+a^{2}}^{u=1+b^{2}} u d u=\left[\frac{1}{2} u^{2}\right]_{u=1+a^{2}}^{u=1+b^{2}} \\
=\left[\frac{1}{2}\left(1+b^{2}\right)^{2}\right]-\left[\frac{1}{2}\left(1+a^{2}\right)^{2}\right]
\end{gathered}
$$

limits of integration, but don't convert back to x's.

Try it out

$$
\begin{aligned}
& \text { - } \int_{0}^{2} \frac{x}{\left(1+x^{2}\right)^{2}} d x \quad \begin{array}{l}
u=1+x^{2} \\
d u=2 x d x
\end{array} \\
& =\int_{u=1}^{u=5} \frac{1}{2} \cdot \frac{1}{u^{2}} d u=\left.\frac{1}{2}\left[-\frac{1}{u}\right]\right|_{u=1} ^{u=5} \\
& =\frac{1}{2}\left[-\frac{1}{5}+1\right]=\frac{1}{2} \cdot \frac{4}{5}=\frac{2}{5}
\end{aligned}
$$

- $\int \tan x d x$. Hint: $\tan x=\frac{\sin x}{\cos x}$. Let $u=\cos x$ $d u=-\sin x d x$

$$
\begin{aligned}
\int \frac{\sin x}{\cos x} d x & =-\int \frac{1}{u} d u \\
& =-\ln |u|+C \\
& =-\ln |\cos x|+C
\end{aligned}
$$

A: 0
B: 0.2
C: 0.4
D: 0.6
E: None of the above

A: $\ln |\sin x|^{2}+C$
B: $-\ln |\sin x|+C$
C: $\ln |\cos x|^{2}+C$
D: $-\ln |\cos x|+C$
E: None of the above

Integration techniques - partial fractions

- Sometimes, it is easier to integrate if you break up a complicated expression into several simpler ones. One way to do this is with a partial fractions decomposition:

$$
\frac{h(x)}{f(x) g(x)}=\frac{A(x)}{f(x)}+\frac{B(x)}{g(x)}
$$

Where $h(x), f(x), g(x), A(x), B(x)$ are all polynomials in x.

$$
\begin{aligned}
& \text { Ex. } \frac{1}{1-x^{2}}=\frac{1}{(1+x)(1-x)}=\frac{A}{1+x}+\frac{B}{1-x} \\
& \\
& \quad \begin{array}{l}
\text { Need: } \quad A(1-x)+B(1+x)=1 \quad \Rightarrow A=\frac{1}{2}, B=\frac{1}{2} \\
\Rightarrow \quad A+B+x(-A+B)=1 \quad \Rightarrow \frac{1}{1-x^{2}}=\frac{\frac{1}{2}}{1+x}+\frac{\frac{1}{2}}{1-x} \\
\Rightarrow \quad A+B=1,-A+B=0
\end{array}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \int \frac{1}{1-x^{2}} d x=\int\left[\frac{1}{2} \cdot \frac{1}{1-x}+\frac{1}{2} \cdot \frac{1}{1+x}\right] d x \\
&=\frac{1}{2} \int \frac{1}{1-x} d x+\frac{1}{2} \int \frac{1}{1+x} d x=\frac{1}{2}[\ln |x+1|-\ln |x-1|] \\
& \begin{aligned}
& \int \frac{1}{1-x} d x=-\int \frac{1}{x-1} d x \\
& \begin{aligned}
\operatorname{let} u=x-1 \\
d u=d x
\end{aligned}=-\int \frac{1}{u} d u \\
&=-\ln |u|+C \\
&=-\ln |x-1|+C
\end{aligned}\left|\begin{array}{l}
\int \frac{1}{1+x} d x
\end{array}\right| \begin{array}{l}
\text { let } \frac{1}{u=x+1} d u \\
d u=d x
\end{array}=\ln |u|+C \\
&=\ln |x+1|+C
\end{aligned}
$$

Try it out: $\int \frac{5 x+1}{2 x^{2}-x-1} d x$

1: Factor: $2 x^{2}-x-1 \quad x=\frac{1 \pm \sqrt{1+8}}{4}=1,-\frac{1}{2}$

$$
\text { A: }(2 x-1)(x-1)
$$ FOIL $=(\underbrace{2 x+1)(x-1)}$ or $\Rightarrow \underset{\substack{(x-1) \\ \rightarrow=2}}{\substack{x \\ \hline}}\left(x+\frac{1}{2}\right)$

2: Solve for $\frac{5 x+1}{2 x^{2}-x-1}=\frac{A}{2 x+1}+\frac{B}{x-1}$

$$
A(x-1)+B(2 x+1)=5 x+1
$$

B: $(2 x+1)(x-1)$
C: $(2 x-1)(x+1)$
D: $(2 x+1)(x+1)$
E: None of the above
A: $A=1, B=1$
B: $A=1, B=2$
C: $A=2, B=2$

$$
\begin{aligned}
& x(A+2 B)+(-A+B)=5 x+1
\end{aligned}
$$

$\mathrm{D}: A=2, B=1$
E : None of the above

3: Integrate $\int \frac{5 x+1}{2 x^{2}-x-1} d x=\int \frac{1}{2 x+1} d x+\int \frac{2}{x-1} d x$

$$
=\frac{1}{2} \ln |2 x+1|+2 \ln |x-1|+C
$$

Product Rule \rightarrow Integration by parts

- Recall $\frac{d}{d x}[u(x) v(x)]=u(x) v^{\prime}(x)+u^{\prime}(x) v(x)$

$$
\text { E. } \frac{d}{d x}\left[(x+1) e^{x}\right]=(x+1) e^{x}+e^{x}=x e^{x}+2 e^{x}
$$

- Integration by parts is the opposite of the product rule:
- $\frac{d}{d x}[u(x) v(x)]=u(x) v^{\prime}(x)+u^{\prime}(x) v(x)=u \cdot \frac{d v}{d x}+v \cdot \frac{d u}{d x}$
- $d[u(x) v(x)]=u \cdot d v+v \cdot d u$
- $u \cdot d v=d[u(x) v(x)]-v \cdot d u$
- $\int u \cdot d v=\int d[u(x) v(x)]-\int v \cdot d u$
- $\int u d v=u v-\int v d u$

Integration by parts algorithm

- $\int u d v=u v-\int v d u$
- Step 1: Guess which part is u and which part is $d v$
- Step 2: Apply the formula above and hope you can solve $\int v d u$
- Step 3: If it doesn't, try again with a different guess for u and $d v$.
- Step ?: Give up if no guess seems to work. The integral might not be amenable to integration by parts.

$$
\begin{aligned}
& \text { Example }\left(\int u d v=u v-\int v d u\right) \\
& \int_{u}^{\ln x}{\underset{\sim}{d v}}_{d x}^{d v} \quad \begin{array}{ll}
\quad=\ln x & v=x \\
d u=\frac{1}{x} d x & d v=d x
\end{array} \\
& =(\ln x) \cdot x-\underbrace{\int x \cdot \frac{1}{x} d x}_{\int d x} \\
& =x+C \\
& =x \ln x-x+C
\end{aligned}
$$

Example $\left(\int u d v=u v-\int v d u\right)$

$$
\int x \ln x d x
$$

Guess 1: $u=1 \quad v=\int x \ln x d x \quad$ Guess $3: \quad u=\ln x \quad v=\frac{1}{2} x^{2}$

$$
d u=0 \quad d u=x \ln x d x
$$

$$
d u=\frac{1}{x} d x \quad d v=x d \alpha
$$

Guess 2: $u=x \ln x \quad v=x$

$$
\begin{aligned}
& d u=(1+\ln x) d x \quad d v=d x \\
& \int x \ln x d x=x^{2} \ln x-\underbrace{\int x(1+\ln x) d x}_{\int\left[x+x^{\ln x]} d x\right.} \\
& \text { — } d u(1+h x) d x=d x \quad \underbrace{-\frac{x^{2}}{2}} \\
& \int \frac{1}{2} x d x=\frac{1}{4} x^{2}+c \\
& =\frac{x^{2} \ln x}{2}-\frac{x^{2}}{4}+C
\end{aligned}
$$

$$
\int u d v=u v-\int v d u
$$

Try it out: $\int x^{2} e^{x} d x$
Let $u=x^{2} \quad v=e^{x}$

$$
d u=2 x d x \quad d v=e^{x} d x
$$

$$
=\underbrace{x^{2} e^{x}-\underbrace{2 \int x e^{x} d x}}_{\text {Let } u=x} \quad v=e^{x}
$$

Write your answer in chat.

$$
\begin{aligned}
& u=x \\
& d u=d x \quad d v=e^{x} d x
\end{aligned}
$$

$$
=x^{2} e^{x}-2\left[x e^{x}-\int e^{x} d x\right]
$$

$$
=x^{2} e^{x}-2 x e^{x}+2 e^{x}
$$

