U-substitution, integration by parts and numerical integration Lecture 4-2021-05-14

MAT A35 - Summer 2021 - UTSC Prof. Yun William Yu

Substitution rule algorithm

$$
\sin ^{2} x=(\sin x)^{2}
$$

- Step 1: Guess an appropriate u

What is a useful change

- Step 2: Compute $d u, d x$, and x of variables?
- Step 3: Substitute in to get rid of all the x 's
- Step 4: Integrate as a function of u

$$
\begin{aligned}
& \text { - Step 5: Convert back to } x \text { 's } \\
& \text { Ex. } \int \frac{3 x^{2} d x}{1+x^{3}} \\
& u=1+x^{3} \\
& d u=3 x^{2} d x \\
& \int \frac{d u}{u} \\
& u=3 x^{2} \\
& d u=6 x d x \\
& \text { Ex. } \int \sin ^{2} x \cos x d x \\
& u=\sin x \\
& u=\cos x \Rightarrow x=\cos ^{-1} u \\
& d u=-\sin x d x \\
& d u=\cos x d x \\
& -\int \sin x \cos x d u \\
& \int u^{2} d u \\
& =-\int\left[\sin \left(\cos ^{-1} u\right)\right] u d u
\end{aligned}
$$

Try it out: what's the u-substitution?

$$
\begin{aligned}
& \text { - } \int x^{4} e^{x^{5}} d x \\
& u=x^{5}=\int \frac{1}{5} e^{u} d u \\
& d u=5 x^{4} d x=\frac{1}{5} e^{u}+C=\frac{1}{5} e^{x^{5}}+C \\
& \text { - } \int e_{u=4 x}^{4 x} d x \quad=\int \frac{1}{4} e^{u} d u \\
& d u=4 d x \quad=\frac{1}{4} e^{u}+C=\frac{1}{4} e^{4 x}+C \\
& \text { - } \int 12 x \sqrt{1+6 x^{2}} d x \quad u=1+6 x^{2} \\
& u=6 x^{2}=\int \sqrt{1+u} d u \\
& d u=12 x d x \quad v=1+u=\int v^{\frac{1}{2}} d v \\
& d v=d u
\end{aligned}
$$

Integration by parts algorithm

- $\int u d v=u v-\int v d u$

Step 1: Guess which part is u and which part is $d v$

- Step 2: Apply the formula above and hope you can solve $\int v d u$
- Step 3: If it doesn't, try again with a different guess for u and $d v$.
- Step ?: Give up if no guess seems to work. The integral might not be amenable to integration by parts.

$$
\begin{gathered}
\int u d v=u v-\int v d u \\
\int \frac{\ln x}{\ln x} d x=x \ln x-\int d x=x \ln x-x+C \\
d u=\frac{1}{x} d x \quad d v=d x \\
\int \underline{x} \frac{\cos x}{d x}=x \sin x-\int \sin x d x=x \sin x+\cos x+C \\
u=x \quad v=\int \cos x d x=\sin x \\
d u=1 d x \quad d v=\cos x d x
\end{gathered}
$$

Integration by parts heuristic: DETAIL

Functions near the top of the list have easy antiderivatives, so are good guesses for $d v$.

- D: (dv)
- E: exponential functions $\left(e^{2 x}, 2^{x}\right)$
- T: trigonometric functions $(\sin x, \tan x, \operatorname{sech} x)$
- A: algebraic functions $\left(x^{2}, 2(x+1)^{2}\right)$
- I: inverse trigonometric functions $(\arcsin x, \operatorname{arccosh} x)$
- L: logarithmic functions $\left(\ln x, \log _{10} 2 x\right)$

Functions near the bottom of the list have easy derivatives, so are good guesses for u.

NB: there are many exceptions to this heuristic. (e.g. sometimes I and L are swapped, and sometimes you need to split algebraic functions into two pieces)

DETAIL example $\left(\int u d v=u v-\int v d u\right)$

$$
\begin{aligned}
& \int \underline{x}^{2} e^{-2 x} d x=x^{2} \cdot\left(-\frac{1}{2} e^{-2 x}\right)-\int\left(-\frac{1}{2} e^{-2 x}\right) 2 x d x \\
& \left.\begin{array}{l}
u=x^{2} \\
d u=-\frac{1}{2} e^{-2 x} \\
d u d x \quad d v=e^{-2 x} d x
\end{array} \right\rvert\,=-\frac{x^{2}}{2} e^{-2 x}+\int x e^{-2 x} d x \\
& \underbrace{u=d x \quad d v=e^{-2 x} d x}_{u=x \quad v=-\frac{1}{2} e^{-2 x}}=\frac{-x^{2}}{2} e^{-2 x}+\left[-\frac{x}{2} e^{-2 x}-\int\left(-\frac{1}{2} e^{-2 x}\right) d x\right] \\
& =-\frac{x^{2}}{2} e^{-2 x}-\frac{x}{2} e^{-2 x}+\frac{1}{2} \int e^{-2 x} d x \\
& =-\frac{x^{2}}{2} e^{-2 x}-\frac{x}{2} e^{-2 x}-\frac{1}{4} e^{-2 x}+C
\end{aligned}
$$

Try it out: $\int_{1}^{e} x \ln x^{2} d x \quad \ln x^{2}=2 \ln x$

- Hints: $\int u d v=u v-\int v d u$ or $\int_{x=a}^{x=b} u d v=\left.u v\right|_{\substack{x=b \\ x=a}} ^{\substack{x=a}} \begin{gathered}x=b \\ x=a\end{gathered} d u$
- DETAIL (dv, exp, trig, algebraic, inverse trig, log)

$$
\begin{aligned}
u & =\ln x^{2} \\
d u & =\frac{1}{x^{2}} \cdot 2 x=\frac{2}{x} \quad \\
\int_{1}^{e} x \ln x^{2} d x & =\left.\frac{1}{2} x^{2} x^{2} \ln x^{2}\right|_{1} ^{e}-\int_{1}^{e} x d x=\frac{1}{2} x^{2} \ln x^{2}-\left.\frac{1}{2} x^{2}\right|_{1} ^{e} \\
& =[\frac{1}{2} e^{2} \underbrace{\ln e^{2}}_{2}-\frac{1}{2} e^{2}]-\left[-\frac{1}{2}\right] \\
& =\frac{1}{2} e^{2}+\frac{1}{2}
\end{aligned} \begin{aligned}
& \begin{array}{c}
\text { B: } e^{2}+1 \\
\text { B: }: \frac{e^{2}+1}{2} \\
\text { D: }: \frac{e^{2}-1}{2} \\
\text { E: None }
\end{array}
\end{aligned}
$$

Application - Drug dosage

- Suppose a patient takes 25 mg of a drug orally and it is where $k=0.2 \mathrm{mg}$ /hour and t is time in hours since ' taking the drug.

$$
\begin{aligned}
\int_{0}^{10} t e^{-k t} d t & =-\left.\frac{t}{k} e^{-k t}\right|_{0} ^{10}-\int_{0}^{10}-\frac{1}{k} e^{-k t} d t_{0}|/|/ M| \\
\left.\begin{array}{rl}
u=t & \\
d u & =d t \quad d v
\end{array}\right)=e^{-k t} d t \quad & =-\frac{10}{0.2} e^{-2}-\left.\left[\frac{1}{k^{2}} e^{-k t}\right]\right|_{0} ^{10} \\
& =-50 e^{-2}-\left[25 e^{-2}-25\right] \\
& =25-75 e^{-2} \approx 14.85 \mathrm{mg} .
\end{aligned}
$$

Theory vs practice

- Practical tools
- Integral tables (need change of variables/u-substitution)
- Table 1, pg. 748, in textbook (Bittinger, Brand, Quintanilla)
- http://integral-table.com/downloads/single-page-integral-table.pdf
- Calculators:
- Desmos: https://www.desmos.com/calculator/be5ne9vwi8
- WolframAlpha:
https://www.wolframalpha.com/input/?i=what+is+the+integral+of+\(x\%2B1\% 29\%5E2+ln+\%28x\%2B1\%29
- Why should you practice what a calculator can do?
- Building blocks for more advanced techniques/analyses.
- Intuition for when things go wrong.
- Understanding how the calculators work so you can modify the algorithm when faced with a (slightly) different problem.

Numerical integration

- We can approximate area under any curve by dividing into shapes we know how to compute area for, like rectangles or trapezoids

Riemann summation rule

Riemann summation rule

Trapezoid rule

Trapezoid rule

$$
\begin{aligned}
& \text { Area }= \\
& \Delta x \cdot h_{1}+\frac{1}{2} \Delta x\left(h_{2}-h_{1}\right) \\
& =\frac{1}{2} \Delta x\left(h_{1}+h_{2}\right) \\
& \text { Area under curve } \approx \\
& \sum_{i=1}^{n} \frac{1}{2} \Delta x\left(f\left(x_{i}\right)+f\left(x_{i-1}\right)\right) \\
& =\frac{1}{2} \Delta x\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

Trapezoid rule

$$
\frac{1}{2} \Delta x\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right) f f\left(x_{n}\right)\right]
$$

i	x_{i}	$f\left(x_{i}\right)$	Weight	Term
0	x_{0}		1	Weight $x f\left(x_{i}\right)$
1	x_{1}		2	
2	x_{2}		2	
\vdots	\vdots		\vdots	
\vdots	\vdots		2	
n	x_{n-1}		1	
n	x_{n}			

Example: $\int_{0}^{1}\left(1-x^{2}\right) d x, n=10$

- $a=0, b=1, \Delta x=0.1$, and $f(x)=1-x^{2}$

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{a}+\boldsymbol{i} \mathbf{\Delta x}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	Riemann weight	Riemann Term	Trapezoid weight	Trapezoid Term
0	0	1	0	1	1	1
1	0.1	0.99	1	0.99	2	1.98
2	0.2	0.96	1	0.96	2	1.92
3	0.3	0.91	1	0.91	2	1.82
4	0.4	0.86	1	0.86	2	1.72
5	0.5	0.75	1	0.75	2	1.50
6	0.6	0.64	1	0.64	2	1.28
7	0.7	0.51	1	0.51	2	1.02
8	0.8	0.36	1	0.36	2	0.72
9	0.9	0.19	1	0.19	2	0.38
10	1	0	1	0	1	0
			Sum:	6.17	Sur:	13.34

$$
\begin{aligned}
\text { Riemann area } & =0.1 \times 6.17 \quad \text { Trap area }
\end{aligned}=0.1 \times \frac{1}{2} \times 13.34
$$

Simpson's Rule of Thirds (parabolic)

- $\int_{0}^{1}\left(1-x^{2}\right) d x, n=10, a=0, b=1, \Delta x=0.1$, and $f(x)=1-x^{2}$

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{a}+\boldsymbol{i} \boldsymbol{\Delta x}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	Riemann weight	Riemann Term	Trapezoid weight	Trapezoid Term
0	0	1	0	0	1	1
1	0.1	0.99	1	0.99	2	1.98
2	0.2	0.96	1	0.96	2	1.92
3	0.3	0.91	1	0.91	2	1.82
4	0.4	0.86	1	0.86	2	1.72
5	0.5	0.75	1	0.75	2	1.50
6	0.6	0.64	1	0.64	2	1.28
7	0.7	0.51	1	0.51	2	1.02
8	0.8	0.36	1	0.36	2	0.72
9	0.9	0.19	1	0.19	2	0.38
10	1	0	1	0	1	0

Simpson weight	Simpson Term
1	1
4	3.96
2	1.92
4	3.64
2	1.72
4	3.00
2	1.28
4	2.04
2	0.72
4	0.76
1	0

$\underset{\text { area }}{\text { Riemann }^{\text {and }}=0.617 \quad \text { Trap }} \quad \underset{\text { area }}{ }: 0.667$
Simpson Area: $\frac{1}{3} \cdot 0.1 \cdot 20.04$ $=0.668$

Most accurate approximation

- Which approximation is most accurate?


```
A: Riemann
B: Trapezoid
C: Simpson
D: B or C
E:None
```

- The accuracy of an approximation depends on the function being approximated.

Area under experimentally sampled curve

- What if we don't have an exact formula for a curve, but just samples along it?
- We can still treat our discrete measurements as samples of $f\left(x_{i}\right)$.
- i.e. even when explicit integration fails, understanding the ideas behind integration lets you apply the related approximations.

