Systems of Linear ODEs Lecture 10a: 2021-07-22

MAT A35 - Summer 2021 - UTSC
Prof. Yun William Yu

System of two first-order ODEs

- Let t be the independent time variable, and let x and y be two dependent variables.
- If a, b, c, d are constants, then $\left\{\begin{array}{l}\frac{d x}{d t}=a x+b y \\ \frac{d y}{d t}=c x+d y\end{array}\right.$ is a homogeneous system of two first-order linear ODEs.
- Similarly, $\left\{\begin{array}{l}\frac{d x}{d t}=a x+b y+f(t) \\ \frac{d y}{d t}=c x+d y+g(t)\end{array}\right.$
is an inhomogeneous system of two first-order linear ODEs.

Reduction method

- We can solve a system of two first-order linear ODEs by converting it into a single second-order linear ODE.
- First compute \ddot{x} as a function of x, y, \dot{y} from the first equation.
- Then eliminate \dot{y} by substituting in the second equation.
- Then, eliminate y by substituting in the first equation.

Solve $2^{\text {nd }}-$ order ODE

- Find eigenvalues/roots of the characteristic equation.
- Solve for x.
- Solve for y .

Initial values

- If there are initial values, plug them in.

Try it out

$\cdot\left\{\begin{array}{l}\dot{x}=y \\ \dot{y}=-x+2 y^{\prime}\end{array}, x(0)=1, y(0)=3\right.$

- Step 1: Find \ddot{x}.
- Step 2: Get rid of \dot{y}.
- Step 3: Get rid of y and rewrite.

$$
\begin{aligned}
& \mathrm{A}: \ddot{x}=0 \\
& \mathrm{~B}: \ddot{x}=1 \\
& \mathrm{C}: \ddot{x}=y \\
& \mathrm{D}: \ddot{x}=\dot{y} \\
& \mathrm{E}: \text { None of the above }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}: \ddot{x}=y \\
& \mathrm{~B}: \ddot{x}=-x+2 y \\
& \mathrm{C}: \ddot{x}=-x y+2 y^{2} \\
& \mathrm{D}: \ddot{x}=\dot{y} \\
& \mathrm{E}: \text { None of the above }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}: \ddot{\ddot{x}+2 \dot{x}+x=0} \\
& \mathrm{~B}: \ddot{x}-2 \dot{x}+x=0 \\
& \mathrm{C}: \ddot{x}+2 \dot{x}-x=0 \\
& \mathrm{D}: \ddot{x}-2 \dot{x}-x=0 \\
& \mathrm{E}: \text { None of the above }
\end{aligned}
$$

Try it out (continued)

- Step 4: Solve the ODE

$$
\begin{aligned}
& \mathrm{A}: x=c_{1} e^{t}+c_{2} e^{-t} \\
& \mathrm{~B}: x=c_{1} e^{t}+c_{2} e^{2 t} \\
& \mathrm{C}: x=c_{1} e^{t}+c_{2} x e^{t} \\
& \mathrm{D}: x=c_{1} e^{t}+c_{2} t e^{t} \\
& \mathrm{E}: \text { None of the above }
\end{aligned}
$$

- Step 5: Plug back in to solve for y.

$$
\begin{aligned}
& \mathrm{A}: y=c_{1} e^{t}+c_{2} t e^{t} \\
& \mathrm{~B}: y=\left(c_{1}+c_{2}\right) e^{t}+c_{2} t e^{t} \\
& \mathrm{C}: y=c_{1} e^{t}+\left(c_{1}+c_{2}\right) t e^{t} \\
& \mathrm{D}: y=\left(c_{1}+c_{2}\right) e^{t}+\left(c_{2}-c_{2}\right) t e^{t} \\
& \mathrm{E}: \text { None of the above }
\end{aligned}
$$

Try it out (continued)

- Plug in initial values $x(0)=1, y(0)=3$

$$
\begin{aligned}
& \mathrm{A}: c_{1}=1, c_{2}=1 \\
& \mathrm{~B}: c_{1}=1, c_{2}=2 \\
& \mathrm{C}: c_{1}=2, c_{2}=1 \\
& \mathrm{D}: c_{1}=2, c_{2}=2 \\
& \mathrm{E}: \text { None of the above }
\end{aligned}
$$

Inhomogeneous example
$\cdot\left\{\begin{array}{l}\dot{x}=x+y+9 t \\ \dot{y}=4 x+y+3\end{array}\right.$

Example (continued)

- $\ddot{x}-2 \dot{x}-3 x=-9 t+12$

Solve for y

$$
\begin{aligned}
& \cdot\left\{\begin{array}{l}
\dot{x}=x+y+9 t \\
\dot{y}=4 x+y+3
\end{array}\right. \\
& \cdot x=c_{1} e^{-t}+c_{2} e^{3 t}+3 t-6
\end{aligned}
$$

Application (Bittinger, 9.3, Ex. 5)

- 3 mg of glactosyl human serum albumin (Tc-GSA) is injected into a patient's bloodstream to measure liver function. After injection, Tc-GSA is transferred from the blood to the liver at 6\% per minute, and from the liver into blood at 3% per minute.
- How much Tc-GSA is in the blood or liver as a function of time?

Application (continued)

$\cdot\left\{\begin{array}{l}\dot{B}=-0.06 B+0.03 L \\ \dot{L}=0.06 B-0.03 L\end{array}\right.$

Application (continued)

- $\ddot{B}+0.09 \dot{B}=0$

$$
L=\frac{100}{3} \dot{B}+2 B
$$

Initial Value Problem

$\cdot\left\{\begin{array}{l}B(t)=c_{1}+c_{2} e^{-0.09 t} \\ L(t)=2 c_{1}-c_{2} e^{-0.09 t}\end{array}\right.$, with initial values $\left\{\begin{array}{l}B(0)=3 \\ L(0)=0\end{array}\right.$

