# Matrix ODE representations Lecture 10b: 2021-07-28 

MAT A35 - Summer 2021 - UTSC
Prof. Yun William Yu

## Homogeneous system as matrix equation

- We can rewrite a homogeneous system of $1^{\text {st }}$-order ODEs as a matrix-vector ODE.
$\cdot\left\{\begin{array}{l}\dot{x}=a x+b y \\ \dot{y}=c x+d y\end{array} \rightarrow \quad\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]\right.$
- The matrix-form equation $\dot{z}=A z$ has solutions $z(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$


## Solution to a matrix-form equation

- If $y^{\prime}=k y$, then $y=c_{0} e^{k x}$ for single-variable ODEs.
- If $\dot{z}=A z$, then perhaps $z=e^{\lambda t} v$, for some constant $\lambda$ and vector $v$.
- Notice that this is exactly the eigenvector/eigenvalue equation, so $(\lambda, v)$ is an eigenpair of $A$.
- Thus, for each eigenpair $(\lambda, v), e^{\lambda t} v$ is a linearly independent solution. If we had $n$ eigenpairs, we could get $n$ solutions.


## Using an eigenbasis for general solutions

- Let $\dot{z}=A z$, where $A$ is an $n \times n$ matrix and $z(t)$ is a length- $n$ vector.
- Then if $\left(\lambda_{1}, v_{1}\right),\left(\lambda_{2}, v_{2}\right), \ldots,\left(\lambda_{n}, v_{n}\right)$ is an eigenbasis of $A$, then

$$
z(t)=c_{1} v_{1} e^{\lambda_{1} t}+\cdots c_{n} v_{n} e^{\lambda_{n} t}
$$

is the general solution for $z(t)$.

## Application (Bittinger, 9.3, Ex. 5)

- 3 mg of glactosyl human serum albumin (Tc-GSA) is injected into a patient's bloodstream to measure liver function. After injection, Tc-GSA is transferred from the blood to the liver at 6\% per minute, and from the liver into blood at $3 \%$ per minute.
- How much Tc-GSA is in the blood or liver as a function of time?



## Application (continued)

$\cdot\left\{\begin{array}{l}\dot{B}=-0.06 B+0.03 L \\ \dot{L}=0.06 B-0.03 L\end{array}\right.$

## Application (continued)

- $\ddot{B}+0.09 \dot{B}=0$

$$
L=\frac{100}{3} \dot{B}+2 B
$$

## Initial Value Problem

$\cdot\left\{\begin{array}{l}B(t)=c_{1}+c_{2} e^{-0.09 t} \\ L(t)=2 c_{1}-c_{2} e^{-0.09 t},\end{array}\right.$ with initial values $\left\{\begin{array}{l}B(0)=3 \\ L(0)=0\end{array}\right.$

## Solving as a matrix equation

$$
\cdot\left\{\begin{array}{l}
\dot{B}=-0.06 B+0.03 L \\
\dot{L}=0.06 B-0.03 L
\end{array} \text { converts to }\left[\begin{array}{c}
\dot{B} \\
\dot{L}
\end{array}\right]=\left[\begin{array}{cc}
-0.06 & 0.03 \\
0.06 & -0.03
\end{array}\right]\left[\begin{array}{l}
B \\
L
\end{array}\right]\right.
$$

## Using eigenvectors for general solution

- $\lambda_{1}=0, v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\lambda_{2}=-0.09, v_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$


## Try it out

- $\left\{\begin{array}{l}\dot{x}=y \\ \dot{y}=3 x+2 y\end{array} \quad\right.$ and $\quad x(0)=0, y(0)=4$
- Step 1. Convert to $z=A z$, where $z=\left[\begin{array}{l}x \\ y\end{array}\right]$.
- Step 2. Find the eigenvalues.

$$
\begin{aligned}
& \mathrm{A}: \lambda=-1,1 \\
& \mathrm{~B}: \lambda=1,2 \\
& \mathrm{C}: \lambda=1,3 \\
& \mathrm{D}: \lambda=-1,3 \\
& \mathrm{E}: \text { None of the above }
\end{aligned}
$$

## Try it out (continued)

- Find the eigenvectors.
$\mathrm{A}: v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$
B: $v_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$
C: $v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$
D: $v_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$
E : None of the above
- What's the general solution?
$\mathrm{A}:\left[\begin{array}{l}x \\ y\end{array}\right]=c_{1} e^{-t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{l}1 \\ 3\end{array}\right]$
B: $\left[\begin{array}{l}x \\ y\end{array}\right]=c_{1} e^{-t}\left[\begin{array}{c}1 \\ -1\end{array}\right],+c_{2} e^{3 t}\left[\begin{array}{l}1 \\ 3\end{array}\right]$
C: $\left[\begin{array}{l}x \\ y\end{array}\right]=c_{1} e^{-t}\left[\begin{array}{l}1 \\ 1\end{array}\right],+c_{2} e^{3 t}\left[\begin{array}{c}1 \\ -3\end{array}\right]$
D: $\left[\begin{array}{l}x \\ y\end{array}\right]=c_{1} e^{-t}\left[\begin{array}{c}1 \\ -1\end{array}\right],+c_{2} e^{3 t}\left[\begin{array}{c}1 \\ -3\end{array}\right]$
E : None of the above


## Try it out (cont., Initial value problem)

- $x(0)=0, y(0)=4$

$$
\begin{aligned}
& \mathrm{A}: c_{1}=-1, c_{2}=-1 \\
& \mathrm{~B}: c_{1}=1, c_{2}=-1 \\
& \mathrm{C}: c_{1}=-1, c_{2}=1 \\
& \mathrm{D}: c_{1}=1, c_{2}=1 \\
& \mathrm{E}: \text { None of the above }
\end{aligned}
$$

