Phase Portraits Lecture 10c: 2021-07-28
 MAT A35 - Summer 2021 - UTSC
 Prof. Yun William Yu

System of two $1^{\text {st }}$-order ODEs

$\cdot\left\{\begin{array}{l}\dot{x}=x+y-\sin t \\ \dot{y}=x^{2}+y^{2}-\ln t\end{array}\right.$ (nonautonomous)

- How many dimensions do nonautonomous systems need to draw direction fields?
$\cdot\left\{\begin{array}{c}\dot{x}=x+y \\ \dot{y}=x^{2}+y^{2}\end{array}\right.$ (autonomous system)
- How many dimensions do autonomous systems need to draw direction fields?
- How many dimensions do autonomous systems need to draw phase "lines"?

```
A: }
B: }
C: }
D:4
E: None of the above
```


Plotting vector fields and trajectories

- Consider $\left\{\begin{array}{l}\dot{x}=f(x, y) \\ \dot{y}=g(x, y)\end{array}\right.$
- The system associates a direction and a magnitude for every point in \mathbb{R}^{2}, telling you what direction trajectories go.
- WolframAlpha: "vector field $\{\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{g}(\mathrm{x}, \mathrm{y})\}$ "
- Ex: "vector field $\{y,-x\}$ " or "integral curves $\{y,-x\}$ "
- Specify limits by adding "x=-3..3, $y=-3 . .3$ " after

Try it out

- Which of the following is the integral curves for the system, plotted for x and y both between -5 and 5 ?

$$
\begin{aligned}
\dot{x} & =4 x-y-\left(x+\frac{3}{2} y\right)\left(x^{2}+y^{2}\right) \\
\dot{y} & =x+4 y+\left(\frac{3}{2} x-y\right)\left(x^{2}+y^{2}\right)
\end{aligned}
$$

Phase plane analysis

- Consider the autonomous homogeneous 2D linear system with constant coefficients

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right], A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

- Also, notice that the origin is always an equilibrium for a linear system.

Using the eigendecomposition

- If $\left(\lambda_{1}, v_{1}\right)$ and $\left(\lambda_{2}, v_{2}\right)$ is an eigendecomposition of A, then the general solution describing any trajectory is

$$
c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}
$$

- We can qualitatively analyze the behavior of the system by looking at the eigenvalues and eigenvectors.
- Consider $f(t)=c e^{\lambda t}$.
- If $\lambda>0$, we get exponential growth away from 0 .
- If $\lambda<0$, we get exponential decay towards 0 .

Sign and stability

- If eigenvalues are positive (or have a positive real part), then trajectories go away from the origin. (unstable node)
- If eigenvalues are negative (or have a negative real part), then trajectories go towards the origin. (asymptotically stable node)
- If eigenvalues have opposite signs, then we have a saddle point, as trajectories come in along one eigenvector, and leave along the other. (unstable, saddle point)

Complex eigenvalues

- Recall complex eigenvalues come in pairs $\lambda_{1,2}=a \pm b i$.
- Solutions look like

$$
z=c_{1} v_{1} e^{a t} \cos b t+c_{2} v_{2} e^{a t} \sin b t
$$

- The sign of the real part a determines if the trajectories go inward (stable) or outward (unstable).
- The imaginary term means that the trajectories have a rotational component; i.e. might spiral in or out, or form a circle.

Degenerate special cases

- Sometimes, if $\lambda_{1}=\lambda_{2}$, there is only one eigenvector. Then we have an improper node that's hard to draw.
- Sign still determines stable vs unstable.

- If $\lambda_{1}=\lambda_{2}$ and we have two eigenvectors, then we have a proper node, which looks like a star.

Summarizing everything

$\cdot\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right], A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

- The origin $(0,0)$ is always an equilibrium point.
- We can understand the behavior around the origin by looking at the eigenvalues of A.
- Positive real parts mean that the trajectories go outward.
- Negative real parts mean that the trajectories go inward.
- Opposite sign eigenvalues mean you have a saddle point.
- Nonzero imaginary components mean that trajectories spiral.

Try it out

- $\lambda_{1}=4, \lambda_{2}=-2$
- $\lambda_{1}=-3, \lambda_{2}=-1$
- $\lambda_{1}=2, \lambda_{2}=3$
- $\lambda_{1}=3, \lambda_{2}=3$
- $\lambda_{1}=3+2 i, \lambda_{2}=3-2 i$
- $\lambda_{1,2}=-1 \pm 2 i$
- $\lambda_{1,2}= \pm 4 i$

A: Asymptotically Stable
B: Stable
C: Unstable
D: ???
E: None of the above

A: Node (incl. (im)proper)
B: Saddle Point
C: Spiral
D: Center
E : None of the above

Special note: weird stuff can happen

 when $\lambda=0$, which we won't deal with.
Example

- Classify the behavior around the origin of $\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Example

- Classify the behavior around the origin of $\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Try it out

- Classify the behavior around the origin of $\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{cc}1 & 3 \\ -3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

A: Asymptotically Stable
A: Node (incl. (im)proper)
B: Stable
C: Unstable
B: Saddle Point
C: Spiral
D: ???
D: Center
E : None of the above
E : None of the above

