Nonlinear Phase Portraits Lecture 1d: 2021-07-28

MAT A35 - Summer 2021 - UTSC
Prof. Yun William Yu

Summarizing everything

- The origin $(0,0)$ is always an equilibrium point, and the eigenvalues of A determine the behavior at that equilibrium.
- Sign:
- Positive real parts \rightarrow trajectories go outward (unstable).
- Negative real parts \rightarrow trajectories go inward (asymptotically stable).
- Opposite sign eigenvalues \rightarrow saddle point (unstable).
- Real vs complex:
- Real eigenvalues give either nodes (if both same sign) or saddle points.
- Nonzero imaginary components mean that trajectories spiral.
- Pure imaginary eigenvalues give rise to a "center". (stable)

Try it out

- $\lambda_{1}=4, \lambda_{2}=-2 \quad B$ saddle, different signs
- $\lambda_{1}=-3, \lambda_{2}=-1$
- $\lambda_{1}=2, \lambda_{2}=3$
- $\lambda_{1}=3, \lambda_{2}=3$
- $\lambda_{1}=3+2 i, \lambda_{2}=3-2 i$
- $\lambda_{1,2}=-1 \pm 2 i$
- $\lambda_{1,2}= \pm 4 i$

Special note: weird stuff can happen when $\lambda=0$, which we won't deal with.

Example

- Classify the behavior around the origin of $\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Eigenvalues: $\left|\begin{array}{cc}\lambda-1 & -3 \\ -3 & \lambda-1\end{array}\right|=\begin{aligned} & \lambda^{2}-2 \lambda+1-9=0 \\ & \lambda^{2}-2 \lambda-8=0\end{aligned}$

$$
\begin{gathered}
\Rightarrow(\lambda-4)(\lambda+2)=0 \\
\lambda=-2,4
\end{gathered}
$$

Saddle pt

Example

- Classify the behavior around the origin of $\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Eigenvalues $\left|\begin{array}{cc}\lambda-1 & -3 \\ 0 & 1-1\end{array}\right|=\begin{aligned} & (1-1)^{2}=0 \\ & \lambda=1, \text { mu lt 2. }\end{aligned} \begin{gathered}\text { unstable } \\ \text { node }\end{gathered}$
To determine if (imen)proper: check \# eigenvectors

$$
\begin{array}{rr}
{\left[\begin{array}{cc}
1 & 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]} & \text { Only } 1 \text { eiburveros } \\
\Rightarrow x+3 y=x & \text { so } \\
\Rightarrow y=0 & \text { improper } \\
\Rightarrow y=\left[\begin{array}{l}
1 \\
0
\end{array}\right] &
\end{array}
$$

Try it out

- Classify the behavior around the origin of $\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{cc}1 & 3 \\ -3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Eng. $\left|\begin{array}{cc}\lambda-1 & 3 \\ -3 & \lambda-1\end{array}\right|=0$

$$
\begin{gathered}
(\lambda-1)^{2}+9=0 \\
(\lambda-1)^{2}=-9 \\
\lambda-1= \pm 3 i \\
\lambda=1 \pm 3 i
\end{gathered}
$$

A: Asymptotically Stable
B: Stable
C: Unstable
A: Node (incl. (im)proper)
B: Saddle Point
C: Spiral
D: ???
E : None of the above
E : None of the above

Nonlinear autonomous systems and Jacobian
$\cdot\left\{\begin{array}{l}\dot{x}=f(x, y) \\ \dot{y}=g(x, y)\end{array}\right.$

- Equilibrium points when $\left\{\begin{array}{l}\dot{x}=0 \\ \dot{y}=0\end{array}\right.$
- We can approximate a function

$$
C^{0=2 x y} \begin{aligned}
& 0 x=0 \text { or } y=0
\end{aligned}
$$ around a point using its derivative

$$
\text { If } x=0, y= \pm 1
$$ at that point.

- The Jacobian of the system is the

$$
\text { If } y=0, x= \pm 1
$$ analogue of the derivative:

$$
J(x, y)=\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right]
$$

$$
\text { Ex }\left\{\begin{array}{l}
\dot{x}=x^{2}+y^{2}-1 \\
\dot{y}=2 x y \\
0=x^{2}+y^{2}-1
\end{array}\right.
$$

$$
\begin{array}{ll}
\text { If } y=0, & x=11 \\
\text { Equilibrial: } & (0,1) \\
(0,-1)
\end{array}
$$

$$
J(\alpha, y)=\left[\begin{array}{cc}
2 x & 2 y \\
2 y & 2 x
\end{array}\right]
$$

Nonlinear equilibria behavior $J(x, y)=\left[\begin{array}{ll}\imath_{x} & l_{y} \\ l_{y} & i_{x}\end{array}\right]$

- Around each equilibrium, we can approximate its behavior by looking at the Jacobian matrix' eigenvalues. $\quad \lambda_{1}=2 \quad \lambda_{2}=-2$

$$
\begin{aligned}
& J(0,1)=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right] \\
& \left|\begin{array}{cc}
\lambda & -2 \\
-2 & \lambda
\end{array}\right|=0 \Rightarrow \begin{array}{c}
\lambda^{2}-4=0 \\
\lambda= \pm 2
\end{array} \quad v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad v_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& \text { Saddle pt, } \lambda_{1}=2 \quad v_{2}=-2 \\
& J(0,-1)=\left[\begin{array}{cc}
0 & -2 \\
-2 & 0
\end{array}\right] \\
& \left|\begin{array}{ll}
d & 2 \\
2 & d
\end{array}\right|=0 \Rightarrow \begin{array}{ll}
d^{2}-4=0 & d_{1}=2 \\
d= \pm 2
\end{array} \quad v_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad v_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& J(1,0)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \\
& \lambda=2 \text {, null 2. } \quad v_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad u_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \text { unstable proper nude } \\
& J(-1,0)=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right] \quad d=-2 \text {, mut } 2 \quad \text { stable proper 20do }
\end{aligned}
$$

Local phase portraits

Phase portraits

Try it out

- Find the equilibrium points for the nonlinear system:

$$
\begin{aligned}
& \dot{x}=x y \\
& \dot{y}=x+2 y-8 \\
& x y=0 \quad 0=x+2 y-8
\end{aligned}
$$

$$
\begin{aligned}
& \text { Case 1: } x=0 \\
& 0=2 y-y \Rightarrow y=4 \quad(0,4)
\end{aligned}
$$

Case 2: $y=0$

$$
0=x-8 \Rightarrow x=8 \quad(8,0)
$$

Try it out

- Find the Jacobian matrix for the nonlinear system:

$$
\begin{aligned}
\dot{x} & =x y \\
\dot{y} & =x+2 y-8 \\
J(x, y) & =\left[\begin{array}{ll}
\frac{\partial}{\partial x}[x y] & \frac{\partial}{\partial y}[x y] \\
\frac{\partial}{\partial x}[x+2 y-8] & \frac{\partial}{\partial y}[x+2 y-8]
\end{array}\right] \\
& =\left[\begin{array}{cc}
y & x \\
1 & 2
\end{array}\right]
\end{aligned}
$$

Try it out

- Use the Jacobian to determine the behavior around the first equilibrium point:

$$
\begin{aligned}
& J(x, y)=\left[\begin{array}{ll}
y & x \\
1 & 2
\end{array}\right] \\
& J(0,4)=\left[\begin{array}{ll}
4 & 0 \\
1 & 2
\end{array}\right] \\
& \lambda_{1}=4 \\
& \lambda_{2}=2 \\
& \text { unstable }
\end{aligned}
$$

A: Asymptotically stable
B: Stable
C: Unstable
D: ???
E: None of the above

A: Node
B: Saddle point
C: Spiral
D: Center
E: None of the above

Try it out

- Use the Jacobian to determine the behavior around the second
equilibrium point:

$$
\begin{aligned}
& J(x, y)=\left[\begin{array}{ll}
y & x \\
1 & 2
\end{array}\right] \\
& J(8,0)=\left[\begin{array}{ll}
0 & 8 \\
1 & 2
\end{array}\right]
\end{aligned}
$$

$$
(8,0)
$$

$$
\left|\begin{array}{cc}
\lambda & -8 \\
-1 & \lambda-2
\end{array}\right|=\lambda^{2}-2 \lambda-8=0
$$

$$
\lambda_{1}=-2, \quad \lambda_{2}=4
$$

$$
\lambda_{1}=-2 \quad 8 y_{y}=-2 x \quad v_{1}=\left[\begin{array}{c}
-4 \\
1
\end{array}\right]
$$

$$
\lambda_{2}=4 \quad 8 y=4 x \quad v_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

A: Asymptotically stable
B: Stable
C: Unstable
D: ???
E: None of the above

E: None of the above

Putting it together

Predator-prey Lotka-Volterra model

- Consider an environment with wolves and deer.
- Deer population: $x(t)$
- Wolf population: $y(t)$
- The deer grow exponentially, but the population is kept in check by predation from the deer:

$$
\dot{x}(t)=2 x-x y
$$

- The wolves die out, unless they can find enough deer to eat.

$$
\dot{y}(t)=-y+0.4 x y \text { interactions are good for wolues }
$$

Find equilibrium values and stability

$$
\left.\begin{array}{l}
\cdot\left\{\begin{array}{c}
\dot{x}=2 x-x y \\
\dot{y}=-y+0.4 x y
\end{array} \quad J(x, y)=\left[\begin{array}{cc}
2-y & -x \\
0.4 y & -1+0.4 x
\end{array}\right]\right. \\
0=2 x-x y=x(2-y) \Rightarrow x=0 \text { or } y=2
\end{array}\right\}=-y+0.4 x y=y(0.4 x-1) \quad l l
$$

Case 1: $x=0 \Rightarrow y=0$
$(0,0)$
Case 2: $y=2 \Rightarrow 0=0.4 x-1 \Rightarrow x=2.5 \quad(2.5,2)$

$$
\begin{aligned}
& \left.J(0,0)=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right] \Rightarrow \begin{array}{ll}
\lambda_{1}=2 \\
\lambda_{2}=-1
\end{array} \quad v_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad v_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\right\} \begin{array}{c}
\text { saddle } \\
\text { pt }
\end{array} \\
& J(2.5,2)=\left[\begin{array}{cc}
0 & -2.5 \\
0.8 & 0
\end{array}\right] \Rightarrow \begin{array}{l}
\lambda^{2}+2=0 \\
\lambda= \pm i \sqrt{2}
\end{array} \Rightarrow \text { center }
\end{aligned}
$$

Phase diagram

