Power series Lecture 11b: 2021-08-04
 MAT A35 - Summer 2021 - UTSC
 Prof. Yun William Yu

Simple mathematical operations

- Which mathematical operation is the hardest?
- Adding, subtracting, or multiplying two real numbers gives a real number.

A: Addition
B: Subtraction
C: Multiplication
D: Division
E: All are equally hard

- Dividing two real numbers may not.

Polynomials

- A real polynomial $p(x)$ in a variable x is an expression that combines together x with real numbers using just addition, subtraction, and multiplication, but no division.
- Canonical form for n th-order polynomials:

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$ where $a_{i} \in \mathbb{R}$ and n is a positive integer.

Polynomials are nice

- Polynomials are built up from the "easy" operations of addition and multiplication (and implicitly subtraction).
- If you add together two polynomials, you get another polynomial.
- If you multiply together two polynomials, you get another polynomial.
- Polynomials are infinitely "smooth" meaning you can keep on taking derivatives at any point.

Recall: different types of regression

- Linear regression: $f(x)=m x+b$
- Quadratic regression: $f(x)=m_{2} x^{2}+m_{1} x+b$
- Cubic regression: $f(x)=m_{3} x^{3}+m_{2} x^{2}+m_{1} x+b$
- Polynomial regression of degree n :

$$
f(x)=b+\sum_{i=1}^{n} m_{i} x^{i}
$$

- Exponential regression: $f(x)=c_{1} e^{c_{2} x}$
- Power dependencies: $f(x)=c_{1} x^{c_{2}}$

Recall: polynomial regression

- Given a collection of points, can approximate it with a polynomial function.

Be careful about too many parameters

- The more parameters you have (e.g. in a polynomial regression), the better your mean squared error will be.
- However, sometimes, you will overfit to the data.
- John von Neumann: "with four parameters, I can fit an elephant, and with five I can make him wiggle his trunk".

Approximating non-polynomial functions

- Sometimes, another "nice" function looks almost like a polynomial, at least locally.

Formal power series

- A polynomial

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

can also be written as

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

- A formal power series is the infinite sum where $n \rightarrow \infty$

$$
p(x)=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

Convergence

- A formal power series $p(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ converges at a value x if the infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$, where $x_{n}=\sum_{i=0}^{n} a_{i} x^{i}$ converges to a limit as $n \rightarrow \infty$. It is divergent otherwise.

$$
\begin{aligned}
& \mathrm{A}: p(0.5)=1 \\
& \mathrm{~B}: p(0.5)=2 \\
& \mathrm{C}: p(0.5)=3 \\
& \mathrm{D}: p(0.5) \text { is divergent } \\
& \mathrm{E}: \text { None of the above }
\end{aligned}
$$

```
A:p(1)=1
B: }p(1)=
C: }p(1)=
D: }p(1)\mathrm{ is divergent
E: None of the above
```


Power series for a function

- A formal power series $p(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ can be thought of as a function whose domain is the interval of convergence.
- Sometimes, we can express another function as a power series, at least on some interval of convergence.

Manipulating power series

- How do we come up with a power series for a function?
- Sometimes, we can manipulate it algebraically.

Try it out

$\cdot \frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots=\sum_{i=0}^{\infty} x^{i}$

- What is $\frac{1}{1-2 x}$?

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

- What is $e^{x^{2}}$?

Taylor series intuition

- If the space shuttle is moving at $10 \mathrm{~m} / \mathrm{s}$ away from Earth, how far away from Earth is it after 1 minute?
-What if its speed is not constant?
- If the space shuttle is moving at $10 \mathrm{~m} / \mathrm{s}$, and it is constantly accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$, how far away is it after 1 minute?

```
A: 10 meters
B: }600\mathrm{ meters
C: }1000\mathrm{ meters
D: 2400 meters
E: None of the above
```

-What if its acceleration is not constant?

Taylor series intuition (part 2)

- If we know all the derivatives of a polynomial at a point (e.g. at $\mathrm{x}=0$), then we can reconstruct the polynomial.

Taylor and Maclaurin series definitions

- The Maclaurin series of a function $f(x)$ is given by
$\sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^{i}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots$
- The Taylor series of a function $f(x)$ at a real number a is the power series

$$
\sum_{i=0}^{\infty} \frac{f^{(i)}(a)}{i!}(x-a)^{i}
$$

- The Maclaurin series is just the Taylor series at $a=0$, and is the power series with matching derivatives at 0 with the original function $f(x)$.

Asides

- The Taylor series for any polynomial is the polynomial itself.
- A Taylor series may not necessarily converge at a point even if the function is well defined.
- A function may differ from the sum of its Taylor series, even if the Taylor series is convergent.
- However, for many common functions, the function and the sum of its Taylor series are equal in some radius of convergence.

Examples

- $f(x)=e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}$

Example

- What is the Maclaurin series for $f(x)=\cos x$?

Try it out

-What is the Maclaurin series for $f(x)=\sin x$?

$$
\begin{aligned}
& \text { A: } 1+x+x^{2}+x^{3}+x^{4}+\cdots \\
& \text { B: } 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
& \text { C: } 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots \\
& \text { D: } x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots \\
& \text { E: None of the above }
\end{aligned}
$$

Proof of Euler's Equation

- $e^{i x}=\cos x+i \sin x$

