Approximating functions Lecture 11c: 2021-08-04
 MAT A35 - Summer 2021 - UTSC
 Prof. Yun William Yu

Approximating $\sin x$

- Recall the Taylor series $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots$
- Can you approximate sin 0.5 by hand?
- We can often approximate a function by cutting off its Taylor series after some number of terms.

Try it out

- What is $e^{0.5}$, approximated using the first 3 terms in its Maclaurin series?

```
A: }
B: }1.
C: 1.5625
D:1.6487
E: None of the above
```


Constant approximation of a function

- If we keep just the first term of a Taylor series, we get a constant approximation.

Linear approximation of a function

- If we keep just the first two terms of a Taylor series, we get a linear approximation.

Quadratic approximation of a function

- If we keep just the first three terms of a Taylor series, we get a quadratic approximation.

Qualitative analysis using approximation

- Often, the qualitative facts we are interested in can be captured by linear or quadratic approximation.
- Constant approximation: roughly where is the function?
- Linear approximation: is the function increasing or decreasing?
- Quadratic approximation: is the function concave up or down?

Multivariable functions

- A function $f(x)$ has a linear approximation at a of

$$
f(a)+f^{\prime}(a)(x-a)
$$

- A multivariable function $f(x, y)$ has a linear approximation at point (a, b) of

$$
f(a, b)+\frac{\partial f(a, b)}{\partial x}(x-a)+\frac{\partial f(a, b)}{\partial y}(y-b)
$$

$$
f(x, y)=x^{2}+y^{2}
$$

https://www.geogebra.org/3d/j8ntyjzw

Function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

- A multivariable function $f(x, y)$ has a linear approximation at point (a, b) of

$$
f(a, b)+\frac{\partial f(a, b)}{\partial x}(x-a)+\frac{\partial f(a, b)}{\partial y}(y-b)
$$

- So, $f(x, y) \approx f(a, b)+\left[\begin{array}{ll}\frac{\partial f(a, b)}{\partial x} & \frac{\partial f(a, b)}{\partial y}\end{array}\right]\left[\begin{array}{l}x-a \\ y-b\end{array}\right]$
- Let $h(x, y)=\left[\begin{array}{l}f(x, y) \\ g(x, y)\end{array}\right], h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
- Then

$$
h(x, y) \approx\left[\begin{array}{l}
f(a, b) \\
g(a, b)
\end{array}\right]+\left[\begin{array}{ll}
\frac{\partial f(a, b)}{\partial x} & \frac{\partial f(a, b)}{\partial y} \\
\frac{\partial g(a, b)}{\partial x} & \frac{\partial g(a, b)}{\partial y}
\end{array}\right]\left[\begin{array}{l}
x-a \\
y-b
\end{array}\right]
$$

Nonlinear phase portraits

- $h(x, y) \approx\left[\begin{array}{l}f(a, b) \\ g(a, b)\end{array}\right]+\left[\begin{array}{ll}\frac{\partial f(a, b)}{\partial x} & \frac{\partial f(a, b)}{\partial y} \\ \frac{\partial g(a, b)}{\partial x} & \frac{\partial g(a, b)}{\partial y}\end{array}\right]\left[\begin{array}{l}x-a \\ y-b\end{array}\right]$
- This approximation holds locally around every point, and therefore around each equilibrium.
- We can thus approximate its behavior by looking at the Jacobian matrix' eigenvalues.

