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Basic derivative/integration table

Derivative rule Integration rule

𝑑

𝑑𝑥
𝑘𝑥 = 𝑘 න𝑘 𝑑𝑥 = 𝑘𝑥 + 𝐶

𝑑

𝑑𝑥

𝑥𝑟+1

𝑟 + 1
= 𝑥𝑟 , 𝑟 ≠ −1 න𝑥𝑟 𝑑𝑥 =

𝑥𝑟+1

𝑟 + 1
+ 𝐶, 𝑟 ≠ −1

𝑑

𝑑𝑥
ln 𝑥 =

1

x
= x−1 න𝑥−1 𝑑𝑥 = ln 𝑥 + 𝐶

𝑑

𝑑𝑥

1

𝑎
𝑒𝑎𝑥 = 𝑒𝑎𝑥 න𝑒𝑎𝑥 𝑑𝑥 =

1

𝑎
𝑒𝑎𝑥 + 𝐶

𝑑

𝑑𝑥
−
1

𝑎
cos 𝑎𝑥 = sin 𝑎𝑥 නsin 𝑎𝑥 𝑑𝑥 = −

1

𝑎
cos 𝑎𝑥 + 𝐶

𝑑

𝑑𝑥

1

a
sin 𝑎𝑥 = cos 𝑎𝑥 නcos𝑎𝑥 𝑑𝑥 =

1

a
sin 𝑎𝑥 + 𝐶



Derivative rules

• Chain rule: 
𝑑

𝑑𝑥
𝑓 𝑔 𝑥 = 𝑓′ 𝑔 𝑥 𝑔′ 𝑥

• Product rule: 
𝑑

𝑑𝑥
𝑓 𝑥 𝑔 𝑥 = 𝑓 𝑥 𝑔′ 𝑥 + 𝑓′ 𝑥 𝑔(𝑥)

• Quotient rule: 
𝑑

𝑑𝑥

𝑓 𝑥

𝑔 𝑥
=

𝑔 𝑥 𝑓′ 𝑥 −𝑓 𝑥 𝑔′ 𝑥

𝑔 𝑥 2



Integration techniques

• Substitution method
• Guess an appropriate 𝑢

• Compute 𝑑𝑢, 𝑑𝑥, and 𝑥

• Substitute to get rid of 𝑥’s

• Integrate as a function of 𝑢

• Convert back to 𝑥’s

• Integration by parts
• ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢

• DETAIL heuristic to guess 𝑢 vs. 𝑑𝑣

• Apply formula to see if it works.

• Partial fractions

•
𝐴

𝑎𝑥+𝑏
+

𝐵

𝑐𝑥+𝑑
=

𝐴 𝑐𝑥+𝑑 +𝐵(𝑎𝑥+𝑏)

(𝑎𝑥+𝑏)(𝑐𝑥+𝑑)



Matrix multiplication

• Let 𝐴 be a 𝑚 × 𝑛 matrix and let 𝐵 be a 𝑛 × 𝑝 matrix. Then the 
product 𝐶 = 𝐴𝐵 is a 𝑚 × 𝑝 matrix such that 

𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 +⋯𝑎𝑖𝑘𝑏𝑘𝑗



Matrix eigenvalues and eigenvectors

• A square matrix 𝐴’s eigenpairs are (𝜆, 𝑣) such that 𝐴𝑣 = 𝜆𝑣.

• You can compute the eigenvalues by det 𝜆𝐼 − 𝐴 = 0.

• Then you can compute the eigenvectors by solving.



Leslie diagrams and matrices

• Leslie diagram arrows represent how each life stage gives rise to 
individuals in the next life stage.

• Leslie matrices encode that into a matrix; each column encodes 
all arrows that starts from the corresponding node. Each row 
encodes all arrows that end in the corresponding node.



Leslie matrices and population prediction

• If we are given a Leslie matrix 𝐿 and a current population vector 
𝑝, then the population one “cycle” later will be 𝐿𝑝, two cycles 
later will be 𝐿 ⋅ 𝐿𝑝 = 𝐿2𝑝, etc.

• Furthermore, the population one cycle earlier can be computed 
by solving the equation 𝐿𝑥 = 𝑝, or by using the matrix inverse 
and computing 𝑥 = 𝐿−1𝑝.



Separation of variables

• Let 
𝑑𝑦

𝑑𝑥
= 𝑓 𝑥 𝑔(𝑦).

• Then 
𝑑𝑦

𝑔 𝑦
= 𝑓 𝑥 𝑑𝑥.

• Integrate both sides.



Exact differentials

• 𝑃 𝑥, 𝑦 𝑑𝑥 + 𝑄 𝑥, 𝑦 𝑑𝑦 = 0, where there exists a function 

𝑓 𝑥, 𝑦 such that 
𝜕𝑓

𝜕𝑥
= 𝑃 and 

𝜕𝑓

𝜕𝑦
= 𝑄—Alternate check: 

𝜕𝑃

𝜕𝑦
=

𝜕𝑄

𝜕𝑥

• Then 𝑓 𝑥, 𝑦 = 𝐶



Constant coefficient homogeneous

• Find all roots 𝜆1, … , 𝜆𝑛 of characteristic polynomial.

• A root with multiplicity 1 means that 𝑒𝜆𝑥 is a solution.

• A root with multiplicity k means that 𝑥𝑘−1𝑒𝜆𝑥 is a solution.

• Take all linear combinations of those solutions.



Method of undetermined coefficients

• Applicable to constant 
coefficient linear 
inhomogeneous ODEs.

• First find homogeneous 
solution.

• Then guess an Ansatz for the 
particular solution that has 
terms corresponding to each of 
the derivatives of the terms in 
the RHS.

• Get general solution by 
combining homogeneous and 
particular solutions.



Homogeneous linear systems

• Given a matrix ODE 𝑧 = 𝐴𝑧, if there is an eigenbasis for 𝐴, then 
𝑧 = σ𝑖=1

𝑛 𝑐𝑖𝑣𝑖𝑒
𝜆𝑖𝑡, where (𝜆𝑖 , 𝑣𝑖) are eigenpairs.



Phase lines

• For a 1-variable autonomous ODE ሶ𝑥 = 𝑓 𝑥 , we can draw a phase 
line by looking at the sign of ሶ𝑥.

• Equilibria are at points where ሶ𝑥 = 0.

• If ሶ𝑥 > 0, then arrows point right-ward.

• If ሶ𝑥 < 0, then arrows point left-ward.

• If both arrows point inward to an equilibrium, asymptotically stable.

• If both arrows point outward from an equilibrium, then unstable.

• If one points inward and the other outward, then semi-stable.



Critical points of multivariable function

• Given 𝑓 𝑥, 𝑦 , the critical points are where 𝑓𝑥 = 0 and 𝑓𝑦 = 0.

• The Hessian matrix is 𝐻 𝑥, 𝑦 =
𝑓𝑥𝑥 𝑓𝑥𝑦
𝑓𝑦𝑥 𝑓𝑦𝑦

.

• If the Hessian matrix at a critical point has all positive 
eigenvalues, then the critical point is a local minimum.

• If the Hessian matrix at a critical point has all negative 
eigenvalues, then the critical point is a local maximum.

• If the Hessian matrix has opposite-sign critical points, then it is a 
saddle point.



Stability analysis: autonomous 2D system

• Consider a linear autonomous system ቊ
ሶ𝑥 = 𝑓(𝑥, 𝑦)
ሶ𝑦 = 𝑔(𝑥, 𝑦)

.

• Equilibria are where ሶ𝑥 = 0 and ሶ𝑦 = 0.

• The Jacobian matrix is 
𝑓𝑥 𝑓𝑦
𝑔𝑥 𝑔𝑦

, and its eigenvalues at an 

equilibrium determine its classification/stability.

• Positive real parts mean that trajectories go outward.

• Negative real parts mean that trajectories go inward.

• Opposite sign eigenvalues mean you have a saddle point.

• Nonzero imaginary components mean that trajectories spiral.



Classification of types

• Nodes: both eigenvalues are real and have the same sign. 
Unstable node if both positive, asymptotically stable node if 
both negative.

• Saddle point: both eigenvalues are real and have opposite sign.

• Spirals: complex eigenpair. If real parts are positive, unstable. If 
real parts are negative, asymptotically stable.

• Center: pure imaginary eigenpair. “stable”



Power series

• 𝑓 𝑥 ≈ 𝑓 0 +
𝑓′ 0

1!
𝑥 +

𝑓′′ 0

2!
𝑥2 +

𝑓′′′ 0

3!
𝑥3 +⋯

• Also, power series can be manipulated like polynomials.
• This includes, addition, subtraction, multiplication, and derivatives.


