Week 1: Integration Lecture 2 - 2021-05-12
 MAT A35 - Summer 2021 - UTSC
 Prof. Yun William Yu

Basic differentiation rules

Integration rule

$$
\begin{array}{rlr}
\frac{d}{d x}[k x]=k & \int k d x=k x+C \\
\frac{d}{d x}\left[\frac{x^{r+1}}{r+1}\right]=x^{r}, \quad r \neq-1 & \int x^{r} d x=\frac{x^{r+1}}{r+1}+C, \quad r \neq-1 \\
\frac{d}{d x}[\ln |x|]=\frac{1}{\mathrm{x}}=\mathrm{x}^{-1} & \int x^{-1} d x=\ln |x|+C \\
\frac{d}{d x}\left[\frac{1}{a} e^{a x}\right]=e^{a x} & \int e^{a x} d x=\frac{1}{a} e^{a x}+C \\
\frac{d}{d x}\left[-\frac{1}{a} \cos a x\right]=\sin a x & \int \sin a x d x=-\frac{1}{a} \cos a x+C \\
\frac{d}{d x}\left[\frac{1}{\mathrm{a}} \sin a x\right]=\cos a x & \int \cos a x d x=\frac{1}{\mathrm{a}} \sin a x+C \\
\frac{d}{d x}\left[\frac{1}{\mathrm{a}} \tan a x\right]=\sec ^{2} a x & \int \sec ^{2} a x d x=\frac{1}{\mathrm{a}} \tan a x+C \\
\frac{d}{d x}\left[-\frac{1}{\mathrm{a}} \cot a x\right]=\csc ^{2} a x & \int \csc ^{2} a x d x=-\frac{1}{\mathrm{a}} \cot a x+C \\
\frac{d}{d x}\left[\frac{1}{\mathrm{a}} \sec a x\right]=\sec a x \tan a x & \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec x+C \\
\frac{d}{d x}\left[-\frac{1}{a} \csc a x\right]=\csc a x \cot a x & \int \csc a x \cot a x d x=-\frac{1}{\mathrm{a}} \csc a x+C
\end{array}
$$

Area under curve

Riemann sums and trapezoid rule

- We can approximate area under any curve by dividing into shapes we know how to compute area for, like rectangles or trapezoids

Example

- Approximate the area under the parabola $y=x^{2}$ between 0 and 3 using a Riemann sum with 3 rectangles.

Try it out

- Approximate the area under the line $y=x$ between 0 and 4 using a Riemann sum.

More rectangles

- Another way to decrease approximation error is to use more rectangles.

Infinite rectangles!

- Take the limit as the rectangles become infinitely thin.

Definition: Let f be a continuous function on $[a, b]$ with $a<b$. Then the definite integral of f from a to b is defined by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} f\left(x_{i}\right)
$$

where $\Delta x=\frac{1}{p}(b-a)$ and $x_{i}=a+i \Delta x . a$ and b are the limits of integration. If $f(x)>0$ on $[a, b]$, then the definite integral represents the area between the curve $y=f(x)$ and the x-axis.

Riemann sum example: $\int_{0}^{4} x^{2} d x$

Signed Area

The definite integral gives a signed area, which is positive when the function is positive and negative when the function is negative.

Fundamental Theorem of Calculus

- First form of the Fundamental Theorem of Calculus
- Let f be a continuous function and let $A(x)=\int_{a}^{x} f(t) d t$. Then $A^{\prime}(x)=$ $f(x)$
- If you integrate a function and then take the derivative, you get the same function back.
- Second form of the Fundamental Theorem of Calculus
- Let $f(x)$ be a continuous function and suppose that $g^{\prime}(x)=f(x)$ (i.e. $g(x)$ is an antiderivative of $f(x))$. Then $\int_{a}^{b} f(x) d x=g(b)-g(a)$
- You can use the antiderivative of a function to compute the definite integral without explicitly using infinite Riemann sums.

Example

Application

- Bacteria in a petri dish grow at a rate of $P^{\prime}(t)=100 e^{-t}$ cells per hour, where t is time in hours. Determine how much the population increases from time $t=0$ to time $t=2$.

Application

- Corn needs 1.5 inches of rainfall or watering per week.
- Suppose it rains today between noon and 1 pm at a rate of $f(t)=2-$ t^{2} inches/hour, where t is the number of hours since noon.
- Did it rain enough that you do not need to water your corn field?

Average of a function

- Let $f:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ be a continuous function. Then its average value $y_{a v}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.

Properties of definite integrals

- Constant multiplication: $\int_{a}^{b} k \cdot f(x) d x=k \cdot \int_{a}^{b} f(x) d x$
- Sum of different integrands with same bounds
- $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
- Sum of same integrand with touching bounds
- $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$ where $a<b<c$

Try it out

$$
\int_{0}^{2} x^{2} d x+\int_{0}^{2} 5 d x+\int_{1}^{3}\left(x^{2}+5\right) d x-\int_{1}^{2}\left(x^{2}+5\right) d x
$$

Area between curves

Let f and g be continuous functions, and suppose that $f(x) \geq$ $g(x)$ over the interval $[a, b]$. Then the area of the region between the two curves on that interval is $\int_{a}^{b}[f(x)-g(x)] d x$.

When $[a, b]$ are unknown, can compute the intersection points to figure out the area bounded by curves.

Example

- Find the area bounded by the graphs of $f(x)=2 x-2$ and $g(x)=x^{2}-2$.

Try it out

- Find the area bounded by graphs of $f(x)=x^{2}$ and $g(x)=x$. - Step 1: find the intersection points.
- Step 2: Decide which graph is on top.
- Step 3: Compute the integral.

Chain rule \rightarrow Substitution rule

- Chain rule: Let $f=f(u)$ be a function of u and $u=u(x)$ be a function of x. Then $\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}$.
- "u-substitution" is the opposite of the chain rule.

Substitution rule algorithm

- Step 1: Guess an appropriate u
- Step 2: Compute $d u, d x$, and x
- Step 3: Substitute in to get rid of all the x 's
- Step 4: Integrate as a function of u
- Step 5: Convert back to x^{\prime} s

Example

Substitution for definite integrals

Try it out

- $\int_{0}^{2} \frac{x}{\left(1+x^{2}\right)^{2}} d x$
- $\int \tan x d x$. Hint: $\tan x=\frac{\sin x}{\cos x}$. Let $u=\cos x$

Integration techniques - partial fractions

- Sometimes, it is easier to integrate if you break up a complicated expression into several simpler ones. One way to do this is with a partial fractions decomposition:

$$
\frac{h(x)}{f(x) g(x)}=\frac{A(x)}{f(x)}+\frac{B(x)}{g(x)}
$$

Where $h(x), f(x), g(x), A(x), B(x)$ are all polynomials in x.

Example

Try it out: $\int \frac{5 x+1}{2 x^{2}-x-1} d x$

Product Rule \rightarrow Integration by parts

- Recall $\frac{d}{d x}[u(x) v(x)]=u(x) v^{\prime}(x)+u^{\prime}(x) v(x)$
- Integration by parts is the opposite of the product rule:
- $\frac{d}{d x}[u(x) v(x)]=u(x) v^{\prime}(x)+u^{\prime}(x) v(x)=u \cdot \frac{d v}{d x}+v \cdot \frac{d u}{d x}$
- $d[u(x) v(x)]=u \cdot d v+v \cdot d u$
- $u \cdot d v=d[u(x) v(x)]-v \cdot d u$
- $\int u \cdot d v=\int d[u(x) v(x)]-\int v \cdot d u$
- $\int u d v=u v-\int v d u$

Integration by parts algorithm

- $\int u d v=u v-\int v d u$
- Step 1: Guess which part is u and which part is $d v$
- Step 2: Apply the formula above and hope you can solve $\int v d u$
- Step 3: If it doesn't, try again with a different guess for u and $d v$.
- Step ?: Give up if no guess seems to work. The integral might not be amenable to integration by parts.

Example $\left(\int u d v=u v-\int v d u\right)$

Example $\left(\int u d v=u v-\int v d u\right)$

Try it out: $\int x^{2} e^{x} d x$

