Volume and improper integration Lecture 2b - 2021-05-19
 MAT A35 - Summer 2021 - UTSC Prof. Yun William Yu

Volume of simple solids

```
Invention of pottery?
    A: Before 1 AD
    B: 1-1000 AD
    C: 1000-1500 AD
    D: 1500-1800 AD
    E:1800 AD-present
```


Solids of revolution

- Area under a curve can be approximated by rectangles

$$
A=\lim _{\mathrm{n} \rightarrow \infty} \sum_{1}^{n} f\left(x_{i}\right) \Delta x
$$

- What if we rotate about the vertical axis? What is the volume?

$$
V=\lim _{\mathrm{n} \rightarrow \infty} \sum_{1}^{n} \pi\left(f\left(x_{i}\right)\right)^{2} \Delta x
$$

Example - Volume of a sphere

Example - Volume of cone

Try it out

- Find the volume of the solid of revolution generated by rotating the region under the graph of $y=\sqrt{x}$ from $x=0$ to $x=1$.


```
A: }\pi-
B: }\pi/
C: }\pi/
D: }
E:None
```


Other Volume Integrals

- Integrating disc volumes along an axis
$\lim _{\mathrm{n} \rightarrow \infty} \sum_{1}^{n} \pi\left(f\left(x_{i}\right)\right)^{2} \Delta x$
- What about other shapes?
$\lim _{\mathrm{n} \rightarrow \infty} \sum_{1}^{n} A(x) \Delta x$, where $A(x)$ is the area of each slice to be multiplied by Δx.

Example - Pyramid

- Suppose the vertical cross section of a pyramid 100 meters tall is always a square, and suppose the side-length of the square is $100-x$ meters, where x is the height above ground in meters.
- What is the volume of the pyramid?

Surface Areas?


```
A:True
B: False
C: ???
D: !!!
E: None
```


- Using discs does NOT work for surface areas because you are incorrectly approximating the paths.

