Systems of linear equations Lecture 3b - 2021-05-26
 MAT A35 - Summer 2021 - UTSC
 Prof. Yun William Yu

Rabbit population - reminder

[average fecundity of young average fecundity of adults] [number of young rabbits] survivability of young survivability of adults $]$ number of adult rabbits $]$

$$
=\left[\begin{array}{c}
\text { number of offspring of young }+ \text { number of offspring of adults } \\
\text { number of surviving young }+ \text { number of surviving adults }
\end{array}\right]
$$

$=\left[\begin{array}{l}\text { number of young rabbits the following year } \\ \text { number of adult rabbits the foollowing year }\end{array}\right]$

- Suppose you have a Leslie matrix $L=\left[\begin{array}{cc}2 & 3 \\ 0.5 & 0.9\end{array}\right]$ and a population vector $p_{2}=\left[\begin{array}{c}230 \\ 59\end{array}\right]$ in Year 2. What was the population vector p_{1} in Year 1?

Matrix Equation to System of Equations

- Suppose you have a Leslie matrix $L=\left[\begin{array}{cc}2 & 3 \\ 0.5 & 0.9\end{array}\right]$ and a population vector $p_{2}=\left[\begin{array}{c}230 \\ 59\end{array}\right]$ in Year 2. What was the population vector p_{1} in Year 1?

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 3 \\
0.5 & 0.9
\end{array}\right]} \\
& \underbrace{}_{L}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\underbrace{\left[\begin{array}{c}
2 \\
39 \\
59
\end{array}\right]}_{p_{1}} \Leftrightarrow \underbrace{}_{p_{2}} \Leftrightarrow\left\{\begin{array}{l}
2 x+3 y=230 \\
(0.5 x+0.9 y=59) \times 4 \\
{\left[\begin{array}{cc}
2 & 3 \\
0.5 & 0.9
\end{array}\right]\left[\begin{array}{l}
100 \\
10
\end{array}\right]=\left[\begin{array}{c}
2 \\
20 \\
51
\end{array}\right]}
\end{array} \quad \begin{array}{l}
2 x+3 y=230 \\
2) 2 x+3.6 y=236
\end{array}\right. \\
& \begin{array}{l}
-0.6 y=-6 \\
y=10 \\
x=100
\end{array}
\end{aligned}
$$

Graphs of 2D linear equations

- Can visualize 2 -variable equations as lines.

$$
\begin{aligned}
& a x+b y=c \\
\Rightarrow & y=\frac{c-a x}{b}=\frac{c}{b}-\frac{a}{b} x
\end{aligned}
$$

- Any point on the line is a solution to the equation.

$$
\begin{array}{ll}
x+2 y=3 & x=0, y=\frac{3}{2} \\
y=\frac{3}{2}-\frac{1}{2} x & x=1, y=1 \\
& x=2, y=\frac{1}{2}
\end{array}
$$

Graphs of 2D linear systems

- A solution to a system of 2 linear equations with 2 variables has to be a solution to both of equations-l.e. it lies on both lines.

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

- Three possibilities for number of solutions

$$
1 \text { solution }
$$

no solutions
infinite solutions
(In)consistency and (in)dependence

- A system of equations is consistent if it has at least one solutions. Otherwise, it is inconsistent (no solutions).
- A system of equations is dependent if you can derive one of the equations from the other equations. Otherwise, the system is independent.
- An equation that can be derived from the other equations is also called dependent, and an equation that cannot is called independent.

consistent and independent

inconsistent t independent

consistent f dependent

Try it out

$\left\{\begin{array}{l}x+2 y=5 \\ x-2 y=1\end{array}\right.$

$$
\left\{\begin{array}{l}
x+2 y=5 \\
x+2 y=1
\end{array}\right.
$$

$$
\cdot\left\{\begin{array}{c}
x+2 y=5 \\
-3 x-6 y=-15
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
(x+2 y+z=5 \\
2 x+4 y+2 z=10 \\
x+2 y+z=10
\end{array}\right.
$$

Properties of systems of equations

- Each variable in a system of equations can be thought of as a degree of freedom.

x, y, z

- Each independent equation constrains the system and removes a degree of freedom.

Properties of systems of equations

- A system of n linear equations with n variables has exactly 1 solution if and only if the system is independent and consistent.

$$
\left\{\begin{array}{rr}
x+y=1 & 2 x=6 \\
x-y=5 & x=3
\end{array} \quad y=-2\right.
$$

- If $m>n$, then a system of m linear equations with n variables does not have a solution if all the equations are independent.

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
x+y=1 \\
x-y=5 \\
x+y=0
\end{array}\right\} \begin{array}{l}
x=3 \quad y=-2 \\
\\
\end{array} \Rightarrow b-2=0 \quad x
\end{array}\right.
$$

- If $m<n$, then a system of m linear equations with n variables has infinitely many solutions if the system is independent and consistent. (of course, a system with at least 2 equations can be inconsistent)

$$
x+y=1
$$

Substitution method

- Solve for a variable in one equation in terms of the other variables, and then substitute it into al the other equations.
- Iterate until you know the value of one variable.
- Then plug that variable value into all of the equations and repeat the entire process with one fewer variable.

$$
\left\{\begin{array}{c}
3 x-2 y=1 \\
C_{y}-x+y=1 \\
y=x+1 \\
3 x-2(x+1)=1 \\
3 x-2 x-2=1 \\
x=3 \\
y=4
\end{array}\right.
$$

Elimination Method

- Transform a system into an "equivalent" system with the same solutions using three types of operations: $\quad\left\{\begin{array}{l}x+y=1 \\ x-y=0\end{array} \Leftrightarrow\left\{\begin{array}{l}x-y=0 \\ x+y=1\end{array}\right.\right.$
- Change (permute) the order of the equations.
- Multiply an equation by a non-zero constant. $\quad x+y=1 \Leftrightarrow 2 x+2 y=2$
- Add a multiple of one equation (A) to another $(B) .(B \leftarrow C A+B)$
- Goal is to eliminate variables
- Can then use "back-substitution" to solve.
- Can encode as an "augmented matrix"

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x + y = 1 } \\
{ x - y = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x+y=1 \\
2 x=1
\end{array}\right.\right. \\
& \text { Ex. } \quad \begin{array}{l}
\frac{1}{2}
\end{array} \\
& \quad \frac{1}{2}+y=1 \Rightarrow y=\frac{1}{2}
\end{aligned}
$$

Example
$\lambda\left[\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ Augmented matrix

$$
\begin{aligned}
& \left\{\begin{array}{ll}
3 x-2 y=1 \\
(-x+y=1) & (-1)
\end{array} \quad-R_{2}\left(\left[\begin{array}{cc|c}
3 & -2 & 1 \\
-1 & 1 & 1
\end{array}\right]\right.\right. \\
& \left\{\begin{array}{l}
3 x-2 y=1 \\
x-y=-1
\end{array}\right. \\
& \left\{\begin{array}{l}
x-y=-1 \\
3 x-2 y=1
\end{array} \quad(-3)\right. \\
& R_{1} \leftrightarrow R_{2} \cup R_{2}-3 R_{1}\left(\left[\begin{array}{ll|l}
1 & -1 & -1
\end{array}\right]\right. \\
& \left\{\begin{array}{c}
x-y=-1 \quad \text { y back-sulost. } \\
y=4
\end{array} \quad\right. \\
& \text {. } \quad\left[\begin{array}{cc|c}
1 & -1 & -1 \\
0 & 1 & 4
\end{array}\right] \\
& \left\{\begin{array}{l}
x=3 \\
y=4
\end{array}\right. \\
& R_{1} \in R_{1}+R_{2}\left(\left[\begin{array}{ll|l}
1 & 0 & 3 \\
0 & 1 & 4
\end{array}\right]\right.
\end{aligned}
$$

Elementary row operations

- Elementary row operations
- Swap: Any row can be switched with any other row
- Scale: Any row can be multiplied by a non-zero constant
- Pivot: A multiple of one row can be added to another row
- If two matrices can be converted to one another via elementary row operations, then they are row-equivalent.

$$
\left[\begin{array}{cc|c}
3 & -2 & 1 \\
-1 & 1 & 1
\end{array}\right] \longleftrightarrow\left[\begin{array}{l}
1 \\
0
\end{array}\right.
$$

(Reduced) row-echelon form

- A matrix is in row-echelon form if:
- If a row is not all 0's, then the first nonzero entry is a 1.
- The leading 1 in a row is to the right of the leading one in the row above.
- Every row with all 0's is at the bottom of the matrix
- A matrix is in reduced row-echelon form if in addition:
- Each column containing a leading 1 in a row has all other entries 0 .

[^0]
Gauss-Jordan elimination

- Gaussian elimination is using elementary row operations to convert a matrix to row echelon form.
- Work from left to right. Start by using swaps, scales, and pivots to convert the leftmost nonzero column to having a 1 as close to the top left as possible, and 0's everywhere else in the column.
- Then iteratively repeat on the submatrix below and to the right of that 1. (i.e. freeze that row; don't do any more row operations to it)
- All zero rows can be swapped to the bottom and ignored.
- An all zero row except with a nonzero right augmented term means that the systems is inconsistent.
- Gauss-Jordan elimination is using elementary row operations to convert a matrix to reduced row echelon form.
- Start with a Gaussian elimination to get to row echelon form.
- For the bottom-right 1 , use pivots to zero out the entries above it.
- Iteratively repeat on the submatrix above and to the right of that 1 until you get all the way to the top.

Example

$$
\left.\begin{array}{ll|l}
0 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
\phi 1
\end{array}\right] \operatorname{RREF}
$$

$$
0=0
$$

$$
x+z=2
$$

$$
y+z=3
$$

2 equatuns, 3 variniky infinite solutions $0=1$ inconsstent, no solutong

$$
\begin{aligned}
& x+z=2 \\
& 2 y+2 z=6 \\
& -2 x+2 y=2<3 \\
& \left.\left[\begin{array}{ccc|c}
1 & 0 & 1 & 2 \\
0 & 2 & 2 & 6 \\
-2 & 2 & 0 & X^{3}
\end{array}\right]\right) R_{3} \leftarrow R_{3}+2 R_{1} \\
& {\left[\begin{array}{lll|c}
1 & 0 & 1 & 2 \\
0 & 2 & 2 & 6 \\
0 & 2 & 2 & 6
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 1 & 2 \\
0 & 1 & 1 & 3 \\
0 & 2 & 2 & 85
\end{array}\right]} \\
& \begin{array}{l}
{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right.} \\
-2 R_{2}
\end{array}
\end{aligned}
$$

Example

Try it out

- Suppose you have a Leslie matrix $L=\left[\begin{array}{cc}1 & 3 \\ 0.5 & 0.9\end{array}\right]$ and a population vector $p_{2}=\left[\begin{array}{c}160 \\ 68\end{array}\right]$ in Year 2, corresponding to 160 young, and 68 adults. How many adults were there in Year 1?

[^0]: A: Row-echelon form
 B: Reduced row-echelon form
 C: Both A \& B
 E: None

