Matrix inverses and determinants Lecture 3c-2021-05-28
 MAT A35 - Summer 2021 - UTSC
 Prof. Yun William Yu

Inverses of multiplication = division

- One way to think about division in real numbers is multiplication by an inverse. Can we do something similar for matrices?

Multiplicative inverses for real numbers

- Let x be a real number. The (multiplicative) inverse of x is another real number $x^{-1}=\frac{1}{x}$ such that $x x^{-1}=x^{-1} x=1$.
- Reversal of multiplication: $x^{-1}(x y)=\left(x^{-1} x\right) y=1 \cdot y=y$

Matrix inverses (for square matrices)

- Let A be a square matrix. The (multiplicative) inverse of A is a matrix A^{-1} with the property that $A A^{-1}=A^{-1} A=I$, where I is the identity matrix.
- If A has an inverse, then it is invertible or nonsingular.
- If A does not have an inverse, then it is noninvertible or singular.
- Theorem: for a square matrix, if $A A^{-1}=I$, then $A^{-1} A=I$.

Finding a matrix inverse

Finding a matrix inverse (cont.)

Matrix inversion through Gauss-Jordan

- Let A be a square $n \times n$ matrix. If we can row reduce the augmented matrix $[A \mid I]$ to the form $[I \mid B]$, then $A^{-1}=B$. Otherwise, the matrix A does not have an inverse.

Try it out

- Remember the Leslie matrix $L=\left[\begin{array}{cc}2 & 3 \\ 0.5 & 0.9\end{array}\right]$ from our rabbit population model. Find the multiplicative inverse of L.

$$
\begin{aligned}
& \text { A: }\left[\begin{array}{cc}
-2 & -3 \\
-0.5 & -0.9
\end{array}\right] \\
& \text { B: }\left[\begin{array}{cc}
3 & -10 \\
-\frac{5}{3} & \frac{20}{3}
\end{array}\right] \\
& \text { C: }\left[\begin{array}{cc}
2 & 0.5 \\
0.9 & 1
\end{array}\right] \\
& \text { D: }\left[\begin{array}{cc}
3 & -\frac{5}{3} \\
-10 & \frac{20}{3}
\end{array}\right] \\
& \text { E: None }
\end{aligned}
$$

Solving linear systems using inverses

- Suppose $A x=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]=b$, where x is an unknown vector. Then we can solve $A x=b$ by multiplying both sides on the left with A^{-1} if it exists. $x=A^{-1} A x=A^{-1} b$
- Suppose you have a Leslie matrix $L=\left[\begin{array}{cc}2 & 3 \\ 0.5 & 0.9\end{array}\right]$ and a population vector $p_{2}=\left[\begin{array}{c}230 \\ 59\end{array}\right]$ in Year 2. What was the population vector p_{1} in Year 1?

When does a matrix have an inverse?

- Recall that matrices are transformations of vectors.
- A matrix has an inverse when you can reverse the transformation.
- But if a matrix sends two points to the same point, then you can't reverse that mapping.

Matrices and length/area/volume scaling

- When a matrix squashes 1D line to a OD point, that's irreversible.
- Note that the length of a line gets scaled, but you get 0 length for a point.
- When a matrix squashes a 2 D square to a 1 D line, that's irreversible.
- Note that the area of a square gets scaled, but a line has area 0.
- When a matrix squashes a 3D cube to a 2D plane, that's irreversible.
- Note that a cube has nonzero volume, but a flat shape has volume 0.

Matrix Determinants

- The determinant of a 1×1 matrix $[a]$ is a.
- The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is

$$
|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

- Note that even though the notation | | looks like absolute values, determinants can be positive or negative.

Try it out

$\cdot\left[\begin{array}{cc}0 & 2 \\ -1 & 0\end{array}\right]$
$\cdot\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
A: 0
B: 1
C: 2
D: 3
E: None

A: 0
B: 1
C: 2
D: 3
E: None

Determinants = (signed) scaling factor

Area of parallelogram

Area of parallelogram

Credit to John Wickerson, https://math.stackexchange.com/questions/29128/

Area of parallelogram

Area of parallelogram

Area of parallelogram

Area of parallelogram

Credit to John Wickerson, https://math.stackexchange.com/questions/29128/

Determinants and invertibility

- A square matrix is invertible if and only if its determinant is nonzero.
- i.e. If a matrix squashes away a dimension, then it is not invertible, and vice versa.
- If A is a square matrix, and $A x=0$ for some vector $x \neq 0$, then $\operatorname{det} A=0$.
- i.e. If a matrix squashes some nonzero vector to zero, then it is not invertible.

Determinants and matrix multiplication

- Since matrices are transformations, and determinants are a signed area, you can multiply together determinants:
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, assuming A and B are square matrices of the same size.

Determinants, minors, and cofactors

- Let $A=\left[a_{i j}\right]$ be a square $n \times$ n matrix. Then we can define the $i j$ th minor $M_{i j}$ of A as the determinant of the matrix where you have removed the i th row and the j th column of A.
- The $i j$ th cofactor $C_{i j}$ of A is $C_{i j}=(-1)^{i+j} M_{i j}$.
- The determinant of A can be defined recursively by
$|A|=a_{11} C_{11}+\cdots a_{1 n} C_{1 n}$ the sum of the entries in the first row and their respective cofactors.
- (you can expand along any row or column using this formula)
3×3 determinant memory aid

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Example

$$
\begin{aligned}
& \text { A: } 2 \\
& \text { B: } 5 \\
& \text { C: } 10 \\
& \text { D: } 32 \\
& \text { E: None }
\end{aligned}
$$

