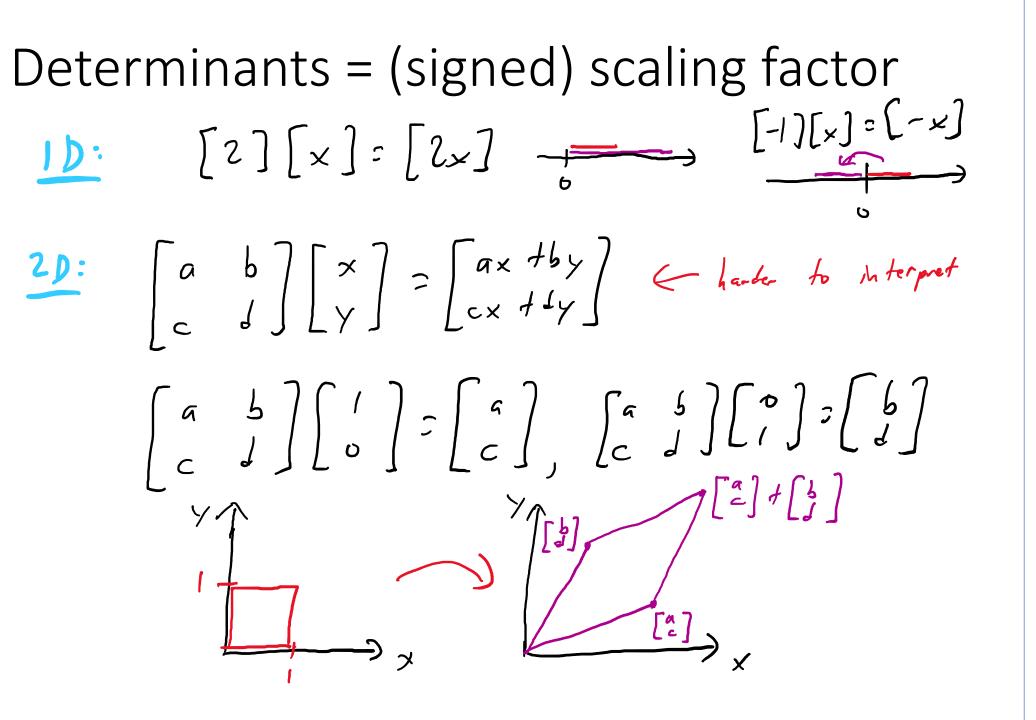
More determinants; matrix eigenvalues and eigenvectors Lecture 4a – 2021-06-02

MAT A35 – Summer 2021 – UTSC

Prof. Yun William Yu

Matrix Determinants

- The determinant of a 1×1 matrix [a] is a.
- The determinant of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is $|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc$
 - Note that even though the notation | | looks like absolute values, determinants can be positive or negative.



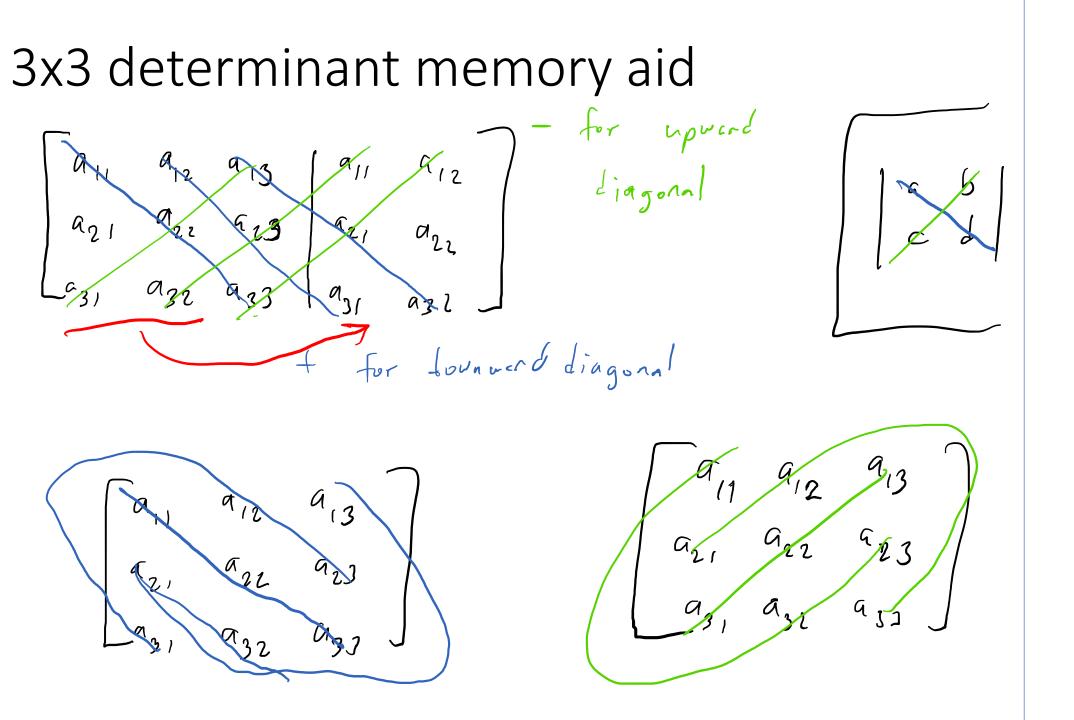
Determinants, minors, and cofactors

• Let $A = [a_{ij}]$ be a square $n \times n$ matrix. Then we can define the *ij*th *minor* M_{ij} of A as the determinant of the matrix where you have removed the *i*th row and the *j*th column of A.

• The *ij*th cofactor
$$C_{ij}$$
 of A is $f = (-1)^{i+j} M_{ij}$.

- The determinant of A can be f = f. defined recursively by $|A| = a_{11}C_{11} + \cdots + a_{1n}C_{1n}$ |A| = fthe sum of the entries in the first row and their respective cofactors.
 - (you can expand along any row or column using this formula)

$$\begin{array}{l} \text{rs, and cofactors} \\ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}^{I} \\ M_{11} = \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} \\ M_{12} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{12} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \\ M_{12} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \\ M_{12} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{I} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} & a_{33} \\ M_{13} = \begin{bmatrix} a_{21} & a_{23} & a_{33} \end{bmatrix}^{I}$$



Example
$$\begin{bmatrix} f & - & f \\ - & f & - & f \end{bmatrix}$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 1 & 3 \\ 6 & 5 & 0 \end{cases} = 0 \cdot \begin{vmatrix} 1 & 3 \\ 5 & 0 \end{vmatrix} - (\begin{vmatrix} 2 & 3 \\ 6 & 6 \end{vmatrix} + 0 \begin{vmatrix} 2 & 5 \\ 6 & 5 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

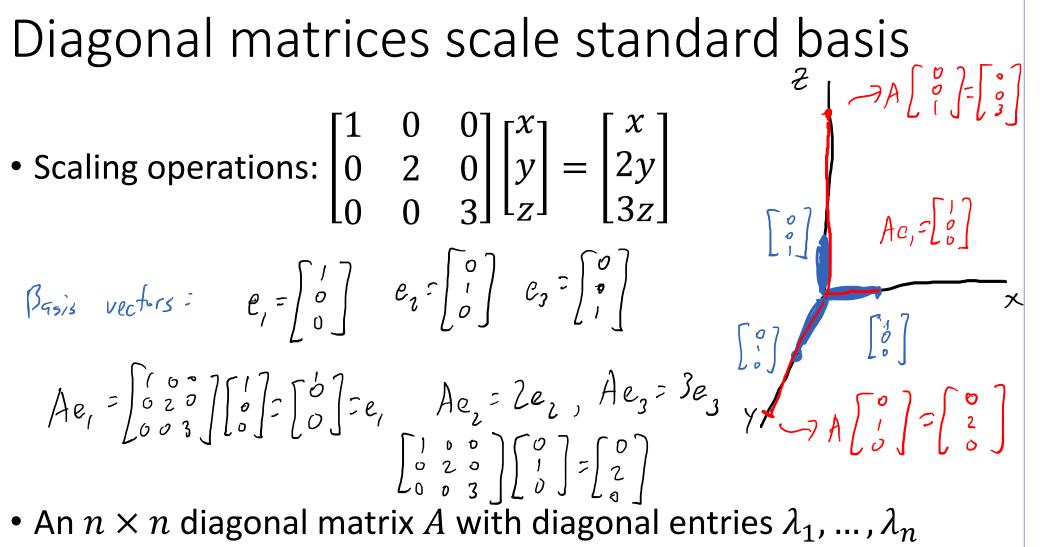
$$\begin{cases} 0 & 1 & 0 \\ 2 & 5 & 0 \end{vmatrix} = 18$$

$$\begin{cases} 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 2$$

$$\begin{cases} 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 2$$

$$\end{cases} = 2 \cdot 18 = 36$$

Try it out						
1 • 4 7			(1			A: -1 B: 0 C: 1 D: 2 E: None
2 0 0 0 0	0 2 0 0 0	0 0 2 0 0	0 0 0 2 0	0 0 0 0 2	$= 2 \frac{2000}{0200} - 9.4444$ = 2 $\frac{2000}{0002} - 9.4444$ = 2 $\frac{2000}{0002} = 2 \cdot 2 \frac{200}{020}$ = 2 $\cdot 2 \frac{200}{020}$ = 2 $\cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$	A: 2 B: 5 C: 10 D: 32 E: None



scales the standard basis vectors e_1, \dots, e_n , where e_i is a vector with 0's everywhere except a 1 in position *i* by $Ae_i = \lambda_i e_i$.

What about non-diagonal matrices?

• $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ x+y \end{bmatrix}$ $\int \frac{2}{2}$ [:].->[:] [-,] A [-'] -[0] $A\left[\frac{1}{2}\right] = \left[\frac{1}{2}\right] =$ $A\left[\stackrel{\circ}{,}\right]=A\left[\stackrel{\prime}{,}\right]=\left[\stackrel{\prime}{,}\right]$ $= (\mathcal{D} \cdot)$ A scales [1] does not scale scales [1 by a factor of 2 Sol or [0]

Eigenvalues and Eigenvectors

- Let A be an $n \times n$ square matrix, and let v be a non-zero vector of length n. Then if $Av = \lambda v$ for some number λ , then v is an eigenvector of A with corresponding eigenvalue λ . Together, they are also sometimes known as an eigenpair (λ, v) .
 - An eigenvector v is a vector that gets scaled by a constant multiple λ (called an eigenvalue) when multiplied by A.
 - If v is an eigenvector for the eigenvalue λ , then so is kv, for any $k \neq 0$.

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ has two eigenpairs } \begin{pmatrix} 2, [1] \\ 1 \end{bmatrix}, \begin{pmatrix} 0, [-1] \end{pmatrix}, \begin{pmatrix} 0, [-1]$$

Try it out

- Let $A = \begin{bmatrix} -9 & 6 & 20 \\ 2 & 2 & -4 \\ -6 & 3 & 13 \end{bmatrix}$.
- Which of the following are eigenvectors of *A*?

 $\begin{vmatrix} -9 & 6 & 20 \\ 2 & 2 & -4 \\ -6 & 5 & -6 \\ 5 & -6 & -18 & -36 & +100 \\ -4 & -12 & -20 \\ -18 & -18 & -18 & -18 \\ -18 &$

 $\begin{bmatrix} -7 & 6 & 20 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} -54 & +6460 \\ 12 & +2 - 12 \\ -36 & +39 \end{bmatrix} = \begin{bmatrix} 12 \\ 2 \\ 6 \end{bmatrix} = 2 = \begin{bmatrix} 6 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -54 & +6460 \\ 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 12 \\ 2 \\ 6 \end{bmatrix} = 2 = \begin{bmatrix} 16 \\ 1 \\ 3 \end{bmatrix} \begin{bmatrix} 16 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -54 & +6460 \\ 12 & +2 - 12 \\ 6 \end{bmatrix} = \begin{bmatrix} 12 \\ 2 \\ 6 \end{bmatrix} = 2 = \begin{bmatrix} 16 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 16 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 12 \\ 12 \\ -36 \\ +3 + 39 \end{bmatrix} = \begin{bmatrix} 12 \\ 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 12 \\ 2 \\ 6 \end{bmatrix} = 2 = \begin{bmatrix} 16 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 16 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 12 \\ 12 \\ -36 \\ +3 + 39 \end{bmatrix} = \begin{bmatrix} 12 \\ 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 12 \\ 2 \\ 6 \end{bmatrix} = 2 = \begin{bmatrix} 16 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 16 \\ 12 \\ 3 \end{bmatrix} = \begin{bmatrix} 16 \\ 12 \\ 12 \\ 12 \end{bmatrix} = \begin{bmatrix} 12 \\ 2 \\ 12 \\ 12 \end{bmatrix} = \begin{bmatrix} 12 \\ 2 \\ 12 \\ 12 \end{bmatrix} = \begin{bmatrix} 12 \\ 2 \\ 12 \\ 12 \end{bmatrix} = \begin{bmatrix} 12 \\ 12 \\$

A: $\begin{bmatrix} 2 & -6 & 5 \end{bmatrix}^T$ B: $\begin{bmatrix} 6 & 1 & 3 \end{bmatrix}^T$ C: $\begin{bmatrix} 12 & 2 & 6 \end{bmatrix}^T$ D: All of the above E: None of the above

Calso engenuector

Finding eigenvalues of a matrix

• Let A be a $n \times n$ matrix. If λ is an eigenvalue of A, then $det(A - \lambda I) = 0$.

proof.
$$A_v = A_v$$
 for some nonzero V.
 $A_v - A_v = 0$
 $A_v - A_v = 0$ (became $v = I_v$)
 $(A - A_v = 0$ (distributive prop.)
 $(A - A_v = 0$ (distributive prop.)
 $= 2 A - A_v = 0$ (distributive prop.)
 $= 2 A - A_v = 0$ (distributive prop.)
 $= 2 A - A_v = 0$ (distributive prop.)
 $= 2 A - A_v = 0$ (distributive prop.)

Example

$$A = \begin{bmatrix} i & i \\ i & i \end{bmatrix}$$

$$det (A - dI) = det (\begin{bmatrix} i & i \\ i & i \end{bmatrix} - 1 \begin{bmatrix} i & 0 \\ 0 & \lambda \end{bmatrix})$$

$$= det (\begin{bmatrix} i - \lambda & i \\ 1 & i - \lambda \end{bmatrix})$$

$$= (1 - A)^{2} - 1 = 1 - 2\lambda + \lambda^{2} - 1 = 0$$

$$= \lambda^{2} - 2\lambda = 0$$

$$\lambda (\lambda - 2) = 0$$

$$= \lambda = 0 \text{ or } \lambda = 2$$

Try it out

•
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
$$\begin{vmatrix} 1 - \lambda & 2 \\ 0 & |-\lambda| \end{vmatrix} = (1 - \lambda)^2 - 20 = D$$
$$= 1$$

•
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 2 & -5 & \lambda + 4 - 6 = 0 \\ \lambda & 2 & -5 & \lambda - 2 = 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ -5 & \lambda + 4 - 6 = 0 \\ \lambda & 2 & -5 & \lambda - 2 = 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 - \lambda & 2 & -5 & \lambda + 4 - 6 = 0 \\ \lambda & 2 & -5 & \lambda - 2 = 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 - \lambda & 2 & -5 & \lambda - 2 = 0 \\ \lambda & 2 & -5 & \lambda - 2 = 0 \end{vmatrix}$$

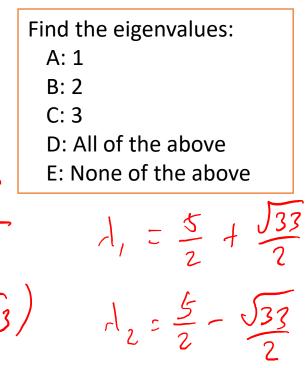
$$\begin{vmatrix} 1 - \lambda & 2 & -5 & \lambda - 2 = 0 \\ \lambda & 2 & -5 & \lambda - 2 = 0 \end{vmatrix}$$

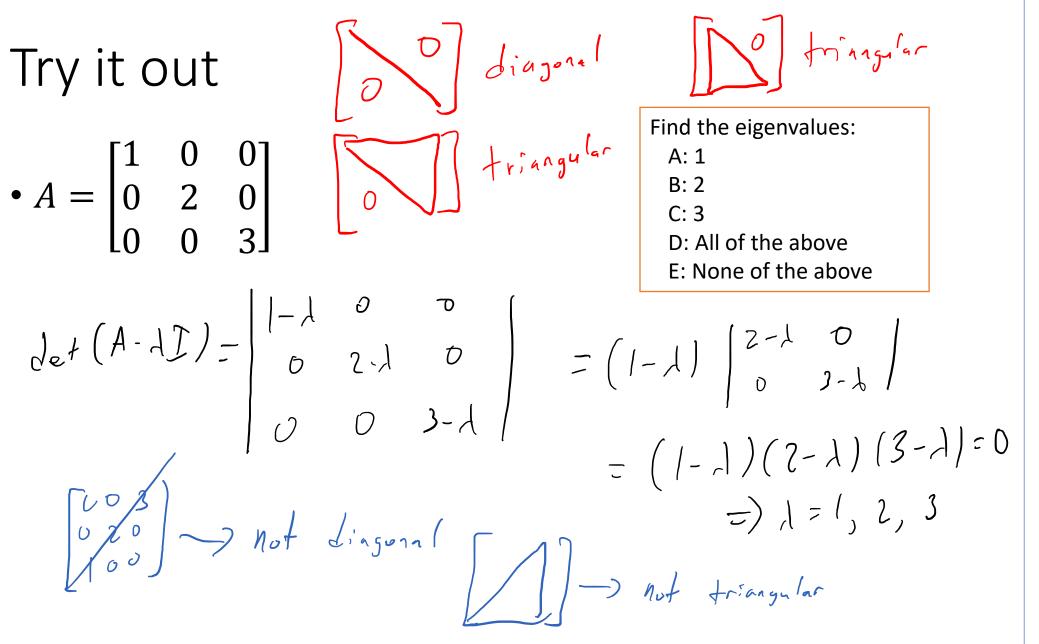
$$\begin{vmatrix} 1 - \lambda & 2 & -5 & \lambda - 2 = 0 \\ \lambda & 2 & -5 & \lambda - 2 = 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 - \lambda & 2 & -5 & \lambda - 2 = 0 \\ \lambda & 2 & -5 & \lambda - 2 = 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 - \lambda & 2 & -5 & \lambda - 2 = 0 \\ \lambda & 2 & -5 & -5 & \lambda - 2 = 0 \end{vmatrix}$$

Find the eigenvalues: A: 1 B: 2 C: 3 D: All of the above E: None of the above





• Triangular matrices have their eigenvalues on the diagonal.

Finding eigenvectors of a matrix

• $Av = \lambda v$, or alternately, $(A - \lambda I)v = 0$

 $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -\lambda & 1 \\ 1 & -\lambda \end{bmatrix} = \lambda^{2} - 1 = 0$ $(\lambda + 1)(\lambda - 1) = 0$ $\lambda = 1, -1 = \lambda, = 1, \lambda_{2} = -1$
$$\begin{split} \lambda_{i} &= I \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & i \\ y \end{bmatrix} = \begin{bmatrix} -x \\ -y \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = \begin{bmatrix} x \\ x \end{bmatrix} \\ &= y = x \\ V_{i} = x \\ V_{i}$$

 $A_{v_i} = A_{v_i}$ Example Au, = L, Iu, $\lambda_1 = 1$ $A = \begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$ $\lambda_2 = 2$ $\lambda_3 = 3$ Av- 17.1 = 0 $(A - rI, I)v_1 = 0$ $\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}$ $\int \begin{bmatrix} 0 & 4 & 6 \\ 0 & 1 & 5 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 4 & 6 & 0 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$ $R \in R$ 507 =)

Example (continued) $\lambda_{2} = \zeta$ $\begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 6 & 3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix}$ $\frac{1}{2} = \frac{1}{2} = 0$ $\int x + 4y + 6z = 2x$ Zy + 5z = 2y3z = 2z $v_{z} = \begin{bmatrix} 4y \\ y \\ 0 \end{bmatrix}$ $\frac{1}{2} \sum_{x \neq y} \frac{1}{2} \sum_{y \neq y} \frac{1}{2} \sum_$ $-) \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} -4 \\ -1 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} 8 \\ 2 \\ 0 \end{bmatrix}$

Try it out

• $A = \begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$. What is the eigenvector corresponding to the eigenvalue $\lambda \stackrel{\prime\prime}{=} 3$? $\int x - 1^{3}z^{20} \qquad x = 1^{3}z$ $\int y - 5z^{2} = 0 \qquad y = 5z$ $\begin{bmatrix} -2 & 4 & 6 & 0 \\ 0 & -1 & 5 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 & -3 \\ 0 & 1 & -5 \\ -0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} R_{1} \in R_{1} + 2R_{2},$ Find the corresponding $\begin{bmatrix} 1 & 0 & -13 \\ 0 & 1 & -5 \\$ C: $[13,5,1]^T$ D: All of the above E: None of the above