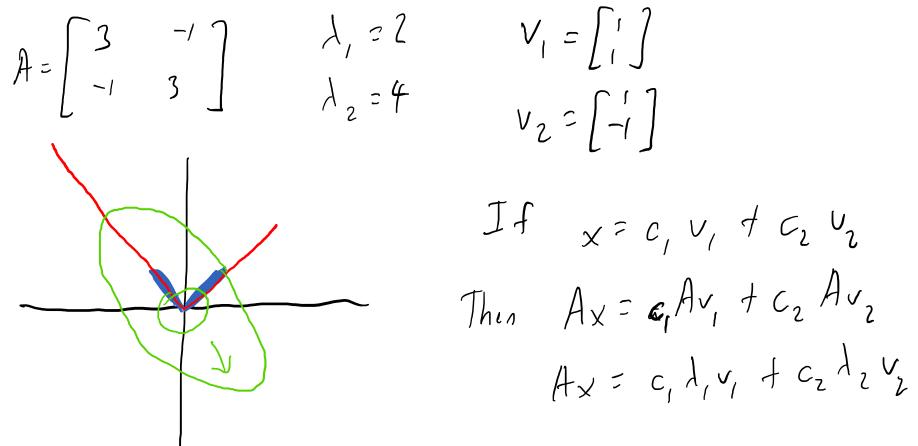
Applications of eigenvalues and eigenvectors Lecture 4b – 2021-06-02

MAT A35 – Summer 2021 – UTSC

Prof. Yun William Yu

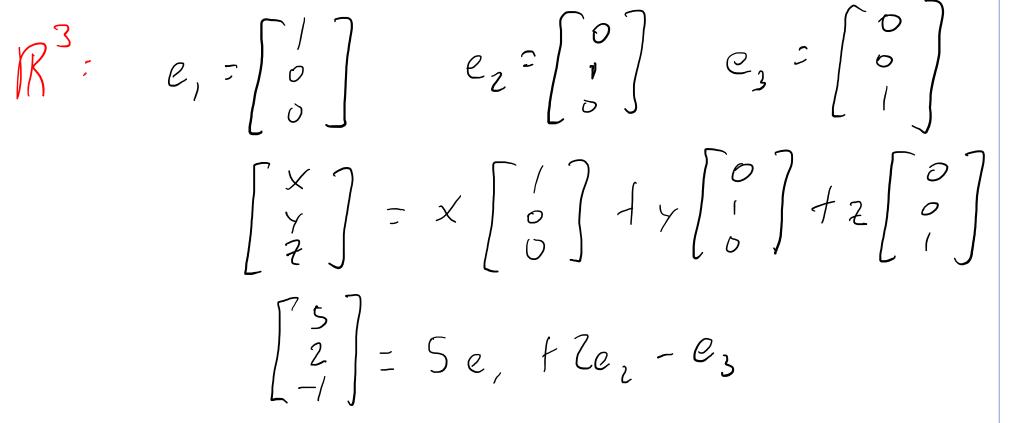
Interpreting eigenvectors and eigenvalues

• If we have *n* distinct eigenpairs of an *n* × *n* matrix *A*, we can interpret the "action" of *A* by what it does to the eigenvectors.



Standard basis vectors of \mathbb{R}^n

- The standard basis of \mathbb{R}^n is e_1, \ldots, e_n , where e_i is the vector with all 0's except a 1 in the *i*th entry.
- Any vector can be written as a *linear combination* of e_i 's.



Other sets of basis vectors of \mathbb{R}^n

- A set of $v_1, ..., v_n$ is a basis of \mathbb{R}^n if every vector $w \in \mathbb{R}^n$ can be written as a linear combination $w = c_1v_1 + \cdots + c_nv_n$.
- Any linearly independent set of n vectors in Rⁿ is a basis of Rⁿ.
 A set of vectors is linearly independent if none of the vectors can be written as a linear combination of the other vectors.

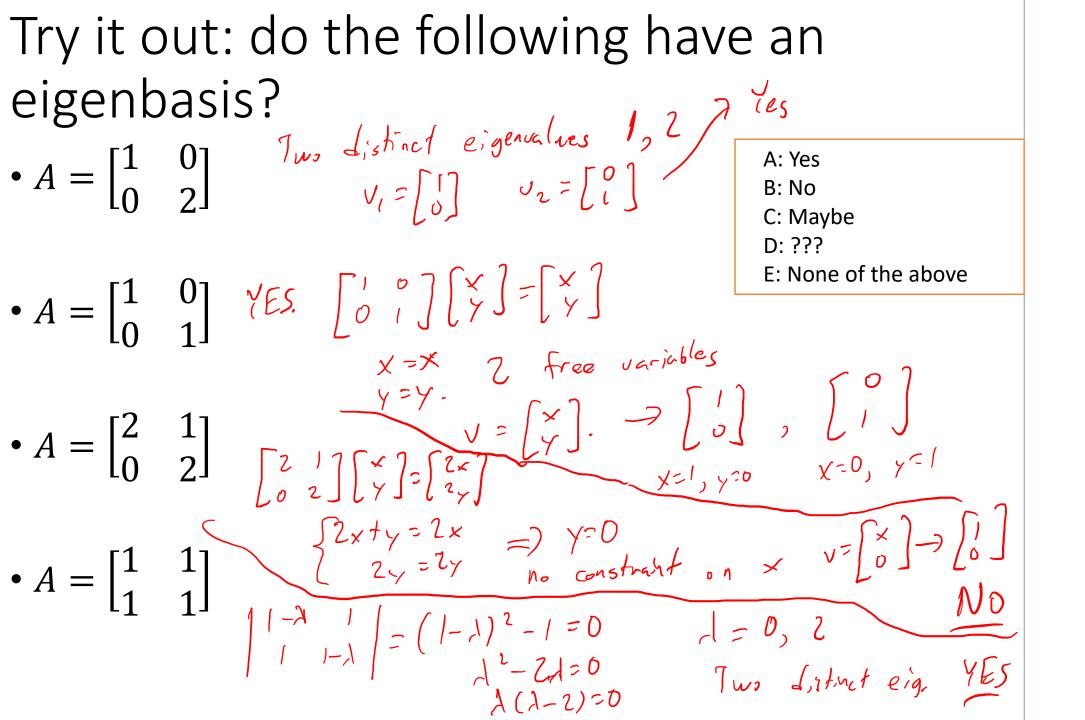
Ex.
$$\int \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is a basis of \mathbb{R}^2
Suppose $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ = $c \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Then $\int = c = -1$ contradiction
 $\Rightarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ are $\int -1$ ind.
Note $\begin{bmatrix} x \\ y \end{bmatrix}$ = $\frac{x + y}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ + $\frac{x - y}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ = $3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Eigenbasis of a square matrix

- If an $n \times n$ matrix A has n linearly independent eigenvectors, those eigenvectors form an eigenbasis. $\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \xrightarrow{has} an e_{i}genbasis \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \xrightarrow{has} only one finearly independent eigenvectors, those form an eigenbasis form an ei$
- Note that eigenvectors corresponding to different eigenvalues are necessarily linearly independent. $= \frac{1}{\sqrt{1-\frac{1}{2}}} \frac$

$$\int A_{v_1} = \lambda_1 v_1, \qquad \text{Suppose } v_1 = \zeta_1 v_1 \\ A_{v_2} = \lambda_2 v_2 \qquad \text{Then } A_{v_1} = c_1 A v_2 \\ = 7 \lambda_1 v_1 = c_1 \lambda_2 v_2 \\ \text{ind.}$$

 Also, can find all linearly independent eigenvectors corresponding to an eigenvalue by setting each of the free variables after Gaussian elimination.



Population Growth Rates

• Suppose that the Leslie matrix G for a population has eigenvectors $v_1, ..., v_n$ with associated eigenvalues $\lambda_1, ..., \lambda_n$ respectively. If the initial population vector is $p = a_1v_1 + \cdots + a_nv_n$, then the population after t time periods is $a_1\lambda_1^tv_1 + \cdots + a_n\lambda_n^tv_n$

proof. The provector after t time periods is
$$G^{t}p$$

= $G^{t}[a, v, t \cdots t a_{n}v_{n}]$
= $a_{i}G^{t}v_{i}t \cdots t a_{n}G^{t}v_{n}$
= $a_{i}\lambda_{i}^{t}v_{i}t \cdots t a_{n}\Lambda_{n}^{t}v_{n}$

Example

 $\begin{bmatrix} 2 \\ i \end{bmatrix} = J \cdot \begin{bmatrix} 2 \\ i \end{bmatrix} + 0 \cdot \begin{bmatrix} -1 \\ i \end{bmatrix}$

 $([1^{0}([1^{2}])))$

 $L^{10}\left(\begin{bmatrix} 2\\ 1 \end{bmatrix} + 6 \cdot \begin{bmatrix} -1\\ 1 \end{bmatrix}\right)$

 $= \lfloor {}^{(\circ)} \lceil {}^{2}_{i} \rceil + \lfloor {}^{(\circ)} \cdot \mathcal{O} \cdot \lceil {}^{-1}_{i} \rceil$

 $= 2^{\left(0\left[\frac{2}{7}\right]} + 0 \cdot (0.5)^{\left(0\right]} + 1)^{-1}$

⊃ 2¹⁰ [²]

• Consider an age-structured population model for birds where you have divided the group into young and old. Each old has only 1 hatchling each year, but survives with probability 1. Each young has 1.5 new hatchlings each year, but survives with only probability 0.5 to become old next year. If $p_0 = [2, 1]^T$, what is the population after 10 years?

 $P_{0} = \begin{bmatrix} \gamma \text{ onng} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 & 5 \end{bmatrix} \\ L = \begin{bmatrix} 1 & 5 \\ 0 & 5 \end{bmatrix} \\ \begin{bmatrix} 1 & 5 \\ 0 & 5 \end{bmatrix} \\ \begin{bmatrix} 1 & 5 \\ -1 & -1 \end{bmatrix} \\ \begin{bmatrix} 1 & 5 \\ -2 & 5 \\ -1 & -1 \end{bmatrix} \\ \begin{bmatrix} 1 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 1 & 5 \\ -2 & 5 \\ -1 & -1 \end{bmatrix} \\ \begin{bmatrix} 1 & 5 \\ -2 & 5 \\ -1 & -1 \end{bmatrix} \\ \begin{bmatrix} 1 & 5 \\ -2 & 5 \\ -1 & -1 \end{bmatrix} \\ \begin{bmatrix} 1 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ \begin{bmatrix} 1 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -1 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & 5 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & -2 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & -2 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & -2 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \end{bmatrix} \\ L = \begin{bmatrix} 2 & 5 \\ -2 & -2 \\ \lambda_{i}=2 \begin{bmatrix} 1.5 & i \\ 0.5 & i \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix} = \begin{bmatrix} 0.5x+y=Ly \\ -1 \end{bmatrix} \begin{bmatrix} 2x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ y \end{bmatrix}$ $P_{10} = 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\int_{2} = 0.5 \left[\begin{bmatrix} 1.5 \\ 0.5 \end{bmatrix} \right] \left[\begin{array}{c} \times \\ 7 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \end{array} \right] = \begin{bmatrix} 0.5 \\ 0.5 \end{array} \right] = \begin{bmatrix} 0.5 \\ 0.5 \end{array} \right] = \begin{bmatrix} 2048 \\ 1054 \end{bmatrix} = \begin{bmatrix} 2048 \\ 1024 \end{bmatrix}$

- Example
- What if the initial population were $p_0 = [3, 0]^T$?

$$\begin{bmatrix} 3 \\ 0 \end{bmatrix} = c_{1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$= \sum c_{1} = 1 \quad c_{2} = -1 \quad$$

Try it out

• What if the initial population size was $p_0 = [0, 6]^T$? Which of the following answers is the closest to the population vector after 10 years?

• Recall
$$L = \begin{bmatrix} 1.5 & 1 \\ 0.5 & 1 \end{bmatrix}$$
, $\lambda_1 = 2$, $v_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\lambda_2 = 0.5$, $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$
A: $\begin{bmatrix} 1000, 500 \end{bmatrix}^T$
B: $\begin{bmatrix} 2000, 1000 \end{bmatrix}^T$
C: $\begin{bmatrix} 4000, 2000 \end{bmatrix}^T$
D: $\begin{bmatrix} 8000, 4000 \end{bmatrix}^T$
E: $\begin{bmatrix} 16000, 8000 \end{bmatrix}^T$

• Note that because exponentials grow super-fast, the long-term growth rate is dominated by the largest (magnitude) eigenvalue.

Try it out

• Consider a population with three life stages, newborn, juvenile, and adult, with the Leslie matrix $L = \begin{bmatrix} 0 & 6 & 8 \\ 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \end{bmatrix}$. At long time scales, what is the ratio of newborns to adults?

> A: 2 to 1 B: 4 to 1 C: 8 to 1 D: 16 to 1 E: None

Advanced topic: complex eigenpairs

- Note that this will NOT be on Quiz 2.
- We've talked a lot about scaling by a constant multiple. But what happens if the numbers aren't real?

- It turns out that imaginary eigenvalues correspond to rotations.
- Complex eigenvalues can be a combination of scaling and rotation.