Applications of eigenvalues and eigenvectors Lecture 4b - 2021-06-02

MAT A35 - Summer 2021 - UTSC
Prof. Yun William Yu

Interpreting eigenvectors and eigenvalues

- If we have n distinct eigenpairs of an $n \times n$ matrix A, we can interpret the "action" of A by what it does to the eigenvectors.

Standard basis vectors of \mathbb{R}^{n}

- The standard basis of \mathbb{R}^{n} is e_{1}, \ldots, e_{n}, where e_{i} is the vector with all 0 's except a 1 in the i th entry.
- Any vector can be written as a linear combination of e_{i} 's.

Other sets of basis vectors of \mathbb{R}^{n}

- A set of v_{1}, \ldots, v_{n} is a basis of \mathbb{R}^{n} if every vector $w \in \mathbb{R}^{n}$ can be written as a linear combination $w=c_{1} v_{1}+\cdots+c_{n} v_{n}$.
- Any linearly independent set of n vectors in \mathbb{R}^{n} is a basis of \mathbb{R}^{n}. A set of vectors is linearly independent if none of the vectors can be written as a linear combination of the other vectors.

Eigenbasis of a square matrix

- If an $n \times n$ matrix A has n linearly independent eigenvectors, those eigenvectors form an eigenbasis.
- Note that eigenvectors corresponding to different eigenvalues are necessarily linearly independent.
- Also, can find all linearly independent eigenvectors corresponding to an eigenvalue by setting each of the free variables after Gaussian elimination.

Try it out: do the following have an eigenbasis?

- $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
- $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\cdot A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
- $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

Population Growth Rates

- Suppose that the Leslie matrix G for a population has eigenvectors v_{1}, \ldots, v_{n} with associated eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ respectively. If the initial population vector is $p=a_{1} v_{1}+\cdots+$ $a_{n} v_{n}$, then the population after t time periods is

$$
a_{1} \lambda_{1}^{t} v_{1}+\cdots+a_{n} \lambda_{n}^{t} v_{n}
$$

Example

- Consider an age-structured population model for birds where you have divided the group into young and old. Each old has only 1 hatchling each year, but survives with probability 1 . Each young has 1.5 new hatchlings each year, but survives with only probability 0.5 to become old next year. If $p_{0}=[2,1]^{T}$, what is the population after 10 years?

Example

- What if the initial population were $p_{0}=[3,0]^{T}$?

Try it out

- What if the initial population size was $p_{0}=[0,6]^{T}$? Which of the following answers is the closest to the population vector after 10 years?
- Recall $L=\left[\begin{array}{ll}1.5 & 1 \\ 0.5 & 1\end{array}\right], \lambda_{1}=2, v_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \lambda_{2}=0.5, v_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& \text { A: }[1000,500]^{T} \\
& \text { B: }[2000,1000]^{T} \\
& \text { C: }[4000,2000]^{T} \\
& \text { D: }[8000,4000]^{T} \\
& \text { E: }[16000,8000]^{T} \\
& \hline
\end{aligned}
$$

- Note that because exponentials grow super-fast, the long-term growth rate is dominated by the largest (magnitude) eigenvalue.

Try it out

- Consider a population with three life stages, newborn, juvenile, and adult, with the Leslie matrix $L=\left[\begin{array}{ccc}0 & 6 & 8 \\ 0.5 & 0 & 0 \\ 0 & 0.5 & 0\end{array}\right]$. At long time scales, what is the ratio of newborns to adults?

```
A: 2 to 1
B: 4 to 1
C: }8\mathrm{ to }
    D: 16 to 1
    E:None
```


Advanced topic: complex eigenpairs

- Note that this will NOT be on Quiz 2.
- We've talked a lot about scaling by a constant multiple. But what happens if the numbers aren't real?
- It turns out that imaginary eigenvalues correspond to rotations.
- Complex eigenvalues can be a combination of scaling and rotation.

