Functions of several variables Lecture 5a - 2021-06-09
 MAT A35 - Summer 2021 - UTSC
 Prof. Yun William Yu

What is a function?

- A function $f: V \rightarrow W$ takes an input in V and gives a (single) output in W.
- Easiest example is when $V=W=\mathbb{R}$, i.e. both are real numbers.
- Another classic example is when $V=W=\mathbb{C}$, both complex numbers.
- We also have less "mathematical" examples. Let V be the set of days, and let W be the set of emotions, and let $f: V \rightarrow W$ be your dominant emotion on that day.

Try it out: is this a function?

- f : [set of persons] \rightarrow [set of colors], where given a person, f tells you what their favorite color is (assuming each person has exactly 1 favorite color)
- $g:$ [set of persons] \rightarrow [set of colors], where given a person, g tells you all the colors they like (can be multiple).
- h : [set of persons] \rightarrow [set of all sets of colors], where given a person, h tells you all the colors they like (can be multiple).
- r : [photos on Reddit] $\rightarrow\{0,1\}$, where r returns 1 if the photo has a cat, and 0 if the photo does not have a cat.
- $r($

- $f: \mathbb{R} \rightarrow \mathbb{R}$, where $f(x)= \pm \sqrt{x}$
- $g: \mathbb{R} \rightarrow \mathbb{R}$, where $g(x)=\sqrt{x}$
- $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, where $h(v)=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] v$

$$
)=0
$$

A: Yes
B: No
C: Maybe
D: ???
E: None of the above

Functions of two variables

- Given $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we know that given any 2D vector $\left[\begin{array}{l}x \\ y\end{array}\right]$, where $x, y \in \mathbb{R}$ are real numbers and the output $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$ is another real number.
- Often, we will write $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$ as $f(x, y)$ for convenience, so f can be thought of as a function of two real variables.

Application - body mass index (BMI)

- The Body-Mass Index (BMI) was developed by Adolphe Quetelet to (approximately) quantify obesity.
- $B(m, h)=\frac{m}{h^{2}}$, where m is mass in kilograms and h is height in meters.

When was BMI invented?
A: Before 1700 A.D.
B: 1700-1800 A.D.
C: 1800-1900 A.D.
D: 1900-2000 A.D.
E: After 2000 A.D.

Functions of several variables

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function from n real numbers that outputs 1 real number.

Geometric interpretation of functions

- $f: \mathbb{R} \rightarrow \mathbb{R}$ "maps" a real number to a real number.
- We can think of the function as pairs of numbers in $\mathbb{R} \times \mathbb{R}=$ \mathbb{R}^{2}, which is what we do when we draw the graph of a function.

Geom. interpret. of 2-variable function

- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ "maps" a pair of numbers to a single number.
- We can think of the function as a list of ordered pairs $((x, y), z) \in \mathbb{R}^{2} \times \mathbb{R}$, where the first part of the ordered pair is a pair $(x, y) \in \mathbb{R}^{2}$ itself. We can then "graph" the function by drawing a surface in \mathbb{R}^{3}.

3D plotting

- https://www.geogebra.org/3d?lang=en
- $z=0$
- $f(x, y)=x+y$

More 3D plotting examples

- https://www.geogebra.org/3d?lang=en
- $z=0$
- $f(x, y)=\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}} \quad \mathrm{f}(\mathrm{x}, \mathrm{y})=\sin \left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right) /\left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right)$

More 3D plotting examples

- https://www.geogebra.org/3d?lang=en
- $Z=0$
- $f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} \quad f(x, y)=x^{\star} y\left(x^{\wedge} 2-y^{\wedge} 2\right) /\left(x^{\wedge} 2+y^{\wedge} 2\right)$

Try it out yourself:

- https://www.geogebra.org/3d?lang=en

- $f(x, y)=x^{2}+y^{2}$
$\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2$
- $f(x, y)=5$
$\mathrm{f}(\mathrm{x}, \mathrm{y})=5$
- $f(x, y)=x^{2}-y^{2}$
$\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\wedge} 2-\mathrm{y}^{\wedge} 2$
- $f(x, y)=x^{2}+y^{2}+\frac{1}{x^{2}+y^{2}}$
$\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2+1 /\left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right)$
- $f(x, y)=\sin x+\cos y$
$\mathrm{f}(\mathrm{x}, \mathrm{y})=\sin (\mathrm{x})+\cos (\mathrm{y})$

