Partial derivatives Lecture 5b - 2021-06-09

MAT A35 - Summer 2021 - UTSC
Prof. Yun William Yu

What is a derivative?

- A derivative measures the rate of change of a function as the variable it depends on changes.
- Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ written as $f(x), \frac{d f}{d x}=f^{\prime}$ measures how quickly f changes when x changes.
- Note $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ since $f^{\prime}(x)$ is a real number.

$$
\text { Ex. } \begin{aligned}
f(x) & =x^{2} \\
f^{\prime}(x) & =2 x \\
f^{\prime}(1) & =2
\end{aligned}
$$

tangent slope at

Partial derivatives of multivar. functions

- We can measure the rate of change of the function with respect to each variable independently, assuming the other variable doesn't change.
- Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ written as $f(x, y)$, the partial derivative $\frac{\partial f}{\partial x}$ measures how quickly f changes when x changes but y is fixed constant.
- Similarly, the partial derivative $\frac{\partial f}{\partial y}$ measures how quickly f changes when y changes but x is a fixed constant.
- Note $\frac{\partial f}{\partial x}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ takes as input a pair (x, y) and outputs a number Pronunciation note: $\frac{\partial f}{\partial x}$ can be read several ways:
- del eff by del ecks
- del eff over del ecks
- del eff del ecks
- partial of eff with respect to ecks
- Sometimes even "dee eff dee ecks" if unambiguous
 https://www.geogebra.org/3d/j8ntyjzw

Tangent slope at the point $(1,0,1)$ depends on which direction we are going.

In the x-axis direction, slope is 2 . In the y-axis direction, slope is 0

Formal definition of partial derivatives

- Recall: for $z=f(x)$, where $f: \mathbb{R} \rightarrow \mathbb{R}$, a 1-variable function
- $\frac{d z}{d x}=\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}$
- Let $z=f(x, y)$, where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, a 2-variable function.
- $\frac{\partial z}{\partial x}=\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h(y)-f(x(y))}{h}=f_{x}$
- $\frac{\partial z}{\partial y}=\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}=f_{y}$
- This generalizes in the natural way to n-variable functions, where you just treat all the other variables as constant.

Computing partial derivatives

- For the partial derivative with respect to a variable, treat all the other variables as constants and apply the normal derivative rules.

$$
\begin{array}{ll}
f(x, y)=x^{2}+y^{2} & f(1,0)=1 \\
\frac{\partial f}{\partial x}(x, y)=\frac{\partial}{\partial x}\left[x^{2}+y^{2}\right]=2 x & \frac{\partial f}{\partial x}(1,0)=2 \\
\frac{\partial f}{\partial y}(x, y)=\frac{\partial}{\partial y}\left[x^{2}+y^{2}\right]=2 y & \frac{\partial f}{\partial y}(1,0)=0
\end{array}
$$

Example: $f(x, y)=x^{2}+2 x y^{2}+y^{3}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial f}{\partial x}(x, y)=\frac{\partial}{\partial x}\left[x^{2}\right]+\frac{\partial}{\partial x}\left[2 x y^{2}\right]+\frac{\partial}{\partial x}\left[y^{3}\right] \\
&=2 x+2 y^{2}+0=2 x+2 y^{2} \\
& \text { (treat } y \text { as a constant) }
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial y}(x, y) & =\frac{\partial}{\partial y}\left[x^{2}\right]+\frac{\partial}{\partial y}\left[2 x y^{2}\right]+\frac{\partial}{\partial y}\left[y^{3}\right] \\
& =0+4 x y+3 y^{2}=4 x y+3 y
\end{aligned}
$$

Try it out

- $f(x, y)=3 x^{2} y+x y^{2}$
- Compute $\frac{\partial f}{\partial x}=6 x y+y^{2}$
- Compute $f_{y}=3 x^{2}+2 x y$
- $w=g(x, y, z)=5 y^{2}+2 y z$
- Compute $\frac{\partial g}{\partial x}(x, y)=0$
- Compute $g_{y}=10 y+2 z$
- Compute $\frac{\partial w}{\partial z}=\frac{\partial g}{\partial z}=2 y \leftarrow$
- Evaluating at a point
- Compute $f_{y}(1,2)=3+4=7$
- Compute $\frac{\partial w}{\partial z}(0,1,2)=2$

$$
\alpha\binom{x, y, z}{x}=2 y=2 \cdot 1=2
$$

A: 0
B: $6 x y+y^{2}$
C: $3 x^{2}+2 x y$
D: $3 x^{2}+6 x y+y^{2}+2 x y$
E : None of the above

A: 0
B: $2 y$
C: $10 y+2 z$
D: $5 y^{2}+2 y z$
E : None of the above

A: 0
B: 2
C: 5
D: 7
E: None of the above

What about other directions?

$\left[\begin{array}{ll}\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{\partial f}{\partial y} \cdot \frac{\partial f}{\partial x}$ says how an entire tangent plane. f grows in the x-direction.

- $\frac{\partial f}{\partial y}$ says how fast f grows in the y-direction.
- Advanced (not on quiz 3):
- Given a direction vector $u=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ where $u_{1}^{2}+$ $u_{2}^{2}=1$, we can compute how quickly f grows in the u-direction by computing the matrix product

$$
\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\frac{\partial f}{\partial x} \cdot u_{1}+\frac{\partial f}{\partial y} \cdot u_{2}
$$

where $\nabla f=\left[\begin{array}{ll}\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}\end{array}\right]$ is the gradient of f.

Jacobian matrix

- Consider a function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that takes a point in the plane to another point in the plane.
- We can write $h\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}f(x, y) \\ g(x, y)\end{array}\right]$, where $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Then the Jacobian matrix of h (or of the pair of functions f and g) is given by:

$$
J(x, y)=\left[\begin{array}{l}
\nabla f \\
\nabla g
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right]
$$

- The Jacobian matrix is the higher-dimensional analogue of a derivative, and tells you how the output of the function (a vector) changes as you go in a particular direction.

Example

$$
\begin{aligned}
& \text { Example } \\
& \qquad h(x, y)=\left[\begin{array}{l}
f(x, y) \\
g(x, y)
\end{array}\right]=\left[\begin{array}{cc}
2 x & -3 y^{2} \\
3 x y^{3}
\end{array}\right] \\
& \text { Jacobian } J=\left[\begin{array}{cc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
2 & -6 y \\
3 y_{y}^{3} & 9 x y^{2}
\end{array}\right]
\end{aligned}
$$

- Gradient \approx "total" derivative of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ because it combines together all the partial derivatives.
- Jacobian \approx "total" derivative of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ because it combines together all the partial derivatives.

Higher-order partial derivatives

- Given $f(x, y)$ a function of two variables, $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial x}(x, y)$ is also a function of two variables.
- Define:
- $\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x} \frac{\partial f}{\partial x}=f_{x x}$, which is taking the partial derivative by x twice
- $\frac{\partial^{2} f}{\partial y d x}=\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=f_{x y}$, which is taking partial- x , then partial- y
- $\frac{\partial^{2} f}{\partial x d y}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y}=f_{y x}$, which is taking partial- y , then partial- x
- $\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y} \frac{\partial f}{\partial y}=f_{y y}$, which is taking the partial derivative by y twice

Example: $f(x, y)=x^{3} y^{2}+y \sin x+x e^{y}$

$$
\begin{cases}\frac{\partial f}{\partial x}=3 x^{2} y^{2}+y \cos x+e^{y} & \frac{\partial f}{\partial y}=2 x^{3} y+\sin x+x e^{y} \\ \int^{\frac{\partial^{2} f}{\partial x^{2}}=6 x y^{2}-y \sin x} & \frac{\partial^{2} f}{\partial x \partial y}=6 x^{2} y+\cos x+e^{y} \\ \frac{\partial^{2} f}{\partial y \partial x}=6 x^{2} y+\cos x+e^{y} & \frac{\partial^{2} f}{\partial y^{2}}=6 x^{2}+e^{y}\end{cases}
$$

- Note: "usually" it is true that $\frac{\partial^{2} f}{\partial y d x}=f_{x y}=f_{y x}=\frac{\partial^{2} f}{\partial x d y}$.

Try it out

- $f(x, y)=x^{2} y^{2}+4 x y$
- $\frac{\partial f}{\partial x}=2 x y^{2}+4 y$
- $\left.\frac{\partial f}{\partial y}=2 x^{2} y+4 x\right] \frac{\partial}{\partial x}$
- $\frac{\partial^{2} f}{\partial x^{2}}=2 y^{2}$
- $\frac{\partial^{2} f}{\partial y d x}=4 x y+4$

A: $2 x^{2}$
B: $2 x^{2} y+4 x$
C: $2 y^{2}$
D: $2 x y^{2}+4 y$
E: $4 x y+4$

- $\frac{\partial^{2} f}{\partial x d y}=4_{x y}+4$
$\cdot \frac{\partial^{2} f}{\partial y^{2}}=2 x^{2}$

Hessian matrix

- Hessian matrix corresponds to second derivative

$$
\begin{aligned}
& f(x, y), f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \nabla f=\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right] \quad \text { lIst "total" derivative } \\
&
\end{aligned}
$$

Can think of ∇f as a function $\nabla f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
\text { Jacobian }(\nabla f) & =\operatorname{Jacobinn}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \\
& =\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial y \partial x} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]=\text { Hessian }
\end{aligned}
$$

Hessian matrix $\approx 2^{\text {nd }}$ total derivative

- Say we have $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)$.
- $1^{\text {st }}$ total derivative $\approx \nabla f=\left[\begin{array}{ll}\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}\end{array}\right]$
- We can think of $\nabla f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by transposing $\nabla f^{T}=\left[\begin{array}{l}\frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y}\end{array}\right]$
- Then we can the total derivative of ∇f by using the Jacobian, and we'll call that new matrix the Hessian of f.
- $\operatorname{Hessian}(f)=\operatorname{Jacobian}(\nabla f)=\operatorname{Jacobian}\left(\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}\right)$

$$
=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial y d x} \\
\frac{\partial^{2} f}{\partial x d y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]
$$

- The Hessian includes all the $2^{\text {nd }}$ partial derivatives of f.

