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Height of the CN tower

* OnJune 15, you measure that the
CN tower is 21,785 inches tall.

 How tall will the CN tower be on
July 157

A: 10892.5 inches
B: 21785 inches
C: 43570 inches
D: ?7??

E: None of the above




Growth of a willow tree

* OnJune 15, you measure that a
weeping willow measures 424
inches tall.

* How tall will the tree be on July
157

A: 212 inches

B: 424 inches

C: 848 inches

D: ?7??

E: None of the above




Two data points

* On May 15, you measured that
a weeping willow measures
420 inches tall.

* On June 15, you measured that
the same weeping willow is
424 inches tall.

* How tall is the weeping willow
on July 157

A: 420 inches

B: 424 inches

C: 428 inches

D: ???

E: None of the above




Two data points

* On May 15, you measure that

the CN tower is 21,786 inches
tall.

* On June 15, you measure that

the CN tower is 23785 inches
tall. 10, T¥S

 How tall will the CN tower be
on July 157

A: 21,784 inches
B: 21,785 inches
C: 21,786 inches
D: ?7??

E: None of the above




Model assumptions

* Model assumption: the CN * Model assumption: a willow
tower should stay a roughly tree grows roughly linearly,
constant height, subject to subject to experimental

experimental errors. errors.




One-parameter model

* Model assumption: the CN tower
should stay a constant height,
subject to experimental errors.

* h(t) = b, where b is a constant.
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Two-parameter model

* Model assumption: a willow tree
grows roughly linearly, subject to
experimental errors.

* h(t) = mt + b, where m and b are
constants, and t is time in months
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Three data points

* On April 15, you measured a
height of 417 inches tall.

* On May 15, you measured a 4§
height of 420 inches tall.

* On June 15, you measured that
the same weeping willow is
424 inches tall.

* How tall is the weeping willow
on July 157

A: 424 inches

B: 427 inches

C: 428 inches

D: ???

E: None of the above




The “best”-fit model h(t)7)

* A model is good if it predicts future data accurately.

e Since the model cannot see into the future, the model is built to
accurately explain (“fit” to) existing data.
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Errors in both directions matter

* We want to minimize average errors, but pos/neg errors are both bad.

e Can use either absolute value or squaring before summing errors.

Error from Error from AN
mean median S e omee /
estimator estimator AL 5 N
gi?ss g§?86 esrer e
: 7 il
2 2 ' 1 [ )
3 3 T 2 L ve
1 | / 0 0 0
1 [ / 0 0 0
0 O 0 1 l //L_\,

—
—

Y 3 -
Avore - (/'g—:z./é Sl-¢95

L)
A 4]
L\
~)
'\
-
—

{
~
|




“Best” estimators depend on error metric

* Mean absolute error
* Given data points hy, h,, ..., hy, angl a guessed height b,

1
MAE (b) = £Z|hi _b|
=1

e Optimal guess is the median (the middle element if odd, or the sum of
the two middle elements divided by two if even)

* Mean squared error

* Given data points hq, h,, ..., h,, and a guessed height b, f,rmf
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* Optimal guess is the mean = - 1 hy




Two-parameter model fitting

* h(t) = mt + b, where m and b are constants,

and t is time in months

* What are the optimal values of m and b?

| January 404
1 February 407
7 March 412
Y April 417
& May 420
{ June 424
3 July P77




Error of linear model: f(t) =mt + b

* Mean absolute error
* Given data points hq, h,, ..., h,, at times t4, ..., t,, and parameters (m, b)
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* Computing mean absolute error is hard because absolute value is not
differentiable. (See Linear Programming)

 Mean squared error
* Given data points hq, h,, ..., h,, at times t4, ..., t,, and parameters (m, b)
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* We can find the minimum of this function using tools from calculus.




Best-fit line for willow tree

. f_(t) = 4.11t + 399.6 #
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Derivation for simple example
Ut b) =S(m, b) = %z(hi — (mt; + b))
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Find critical points & check the Hessian

. Set—— Oand—— 0.
. End up with m 4 11and b = 399.6 e
* Then need to check that the
eigenvalues of the Hessian are both  #°]
positive: - >
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eigenvalues at (4.11, 399.6)

* Therefore, the model f(x) =
4.11x 4+ 399.6 is the best-fit line




Linear model error

* Given measurements y4, V>, ..., ¥, at values x4, ..., x,,, a linear
model is a function f(x) = mx + b, with parameters m and b
where y; = f(x;) with some error.

e Ex: the x-axis coordinates might be time, and the y-axis might be height
of a tree as a function of time.

* The Mean Squared Error of the model is given by

MSE(m, b) = — E(yl Fo)” = 2(y1—<mxl+b))

* We want to find the model parameters that give the minimum
mean squared error, so consider the function S(m, b) =

MSE (m, b). We want to find the minimum of the function
S(m,b).




Theorem (linear models)

* Suppose we are given measurements y4, Vo, ..., ¥, at values

_ 1 1
X1, e, Xp. LELX ==X 1 x; and y ==y i=1Yi be the respective

'_’g\n___/—’
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* Then the linear model f(x) = mx + b that minimizes the mean
squared error is given by:
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b=y—mx
* Proof involves using the partial derivatives to find the minimum
of the function S(m,s) = =Y. 1(yl — (mx; + b))




