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Height of the CN tower

• On June 15, you measure that the 
CN tower is 21,785 inches tall.

• How tall will the CN tower be on 
July 15?

A: 10892.5 inches
B: 21785 inches
C: 43570 inches
D: ???
E: None of the above



Growth of a willow tree

• On June 15, you measure that a  
weeping willow measures 424 
inches tall.

• How tall will the tree be on July 
15?

A: 212 inches
B: 424 inches
C: 848 inches
D: ???
E: None of the above



Two data points

• On May 15, you measured that 
a  weeping willow measures 
420 inches tall.

• On June 15, you measured that 
the same weeping willow is 
424 inches tall.

• How tall is the weeping willow 
on July 15?

A: 420 inches
B: 424 inches
C: 428 inches
D: ???
E: None of the above



Two data points

• On May 15, you measure that 
the CN tower is 21,786 inches 
tall.

• On June 15, you measure that 
the CN tower is 2,1785 inches 
tall.

• How tall will the CN tower be 
on July 15?

A: 21,784 inches
B: 21,785 inches
C: 21,786 inches
D: ???
E: None of the above



Model assumptions

• Model assumption: the CN 
tower should stay a roughly 
constant height, subject to 
experimental errors.

• Model assumption: a willow 
tree grows roughly linearly, 
subject to experimental 
errors.



One-parameter model

• Model assumption: the CN tower 
should stay a   constant height, 
subject to experimental errors.

• ℎ 𝑡 = 𝑏, where 𝑏 is a constant.



Two-parameter model

• Model assumption: a willow tree 
grows roughly linearly, subject to 
experimental errors.

• ℎ 𝑡 = 𝑚𝑡 + 𝑏, where 𝑚 and 𝑏 are 
constants, and 𝑡 is time in months



Three data points

• On April 15, you measured a 
height of 417 inches tall.

• On May 15, you measured a  a
height of 420 inches tall.

• On June 15, you measured that 
the same weeping willow is 
424 inches tall.

• How tall is the weeping willow 
on July 15?

A: 424 inches
B: 427 inches
C: 428 inches
D: ???
E: None of the above



The “best”-fit model

• A model is good if it predicts future data accurately.

• Since the model cannot see into the future, the model is built to 
accurately explain (“fit” to) existing data.

Date Height of CN 
tower

January 21,779

February 21,787

March 21,788

April 21,786

May 21,786

June 21,785

July ???



Errors in both directions matter

• We want to minimize average errors, but pos/neg errors are both bad.

• Can use either absolute value or squaring before summing errors.
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“Best” estimators depend on error metric

• Mean absolute error
• Given data points ℎ1, ℎ2, … , ℎ𝑛 and a guessed height 𝑏, 
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• Optimal guess is the median (the middle element if odd, or the sum of 
the two middle elements divided by two if even)

• Mean squared error
• Given data points ℎ1, ℎ2, … , ℎ𝑛 and a guessed height 𝑏, 
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• Optimal guess is the mean = 
1
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Two-parameter model fitting

• ℎ 𝑡 = 𝑚𝑡 + 𝑏, where 𝑚 and 𝑏 are constants, 
and 𝑡 is time in months

• What are the optimal values of 𝑚 and 𝑏?

Month Height of 
willow tree

January 404

February 407

March 412

April 417

May 420

June 424

July ???



Error of linear model: 𝑓 𝑡 = 𝑚𝑡 + 𝑏

• Mean absolute error
• Given data points ℎ1, ℎ2, … , ℎ𝑛 at times 𝑡1, … , 𝑡𝑛 and parameters 𝑚, 𝑏
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• Computing mean absolute error is hard because absolute value is not 
differentiable. (See Linear Programming)

• Mean squared error
• Given data points ℎ1, ℎ2, … , ℎ𝑛 at times 𝑡1, … , 𝑡𝑛 and parameters 𝑚, 𝑏
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• We can find the minimum of this function using tools from calculus.



Best-fit line for willow tree

• 𝑓 𝑡 = 4.11𝑡 + 399.6



Derivation for simple example

Month Height of 
willow tree

1 – January 404

2 – February 407

3 – March 412

4 – April 417

5 – May 420

6 – June 424
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Find critical points & check the Hessian

• Set 
𝜕𝑆

𝜕𝑚
= 0 and 

𝜕𝑆

𝜕𝑏
= 0.

• End up with 𝑚 ≈ 4.11 and 𝑏 = 399.6

• Then need to check that the 
eigenvalues of the Hessian are both 
positive:

•

𝜕2𝑆

𝜕𝑚2

𝜕2𝑆

𝜕𝑏𝜕𝑚

𝜕2𝑆

𝜕𝑚𝜕𝑠

𝜕2𝑆

𝜕𝑏2

has positive 

eigenvalues at (4.11, 399.6)

• Therefore, the model 𝑓 𝑥 =
4.11𝑥 + 399.6 is the best-fit line



Linear model error

• Given measurements 𝑦1, 𝑦2, … , 𝑦𝑛 at values 𝑥1, … , 𝑥𝑛, a linear 
model is a function 𝑓 𝑥 = 𝑚𝑥 + 𝑏, with parameters 𝑚 and 𝑏
where 𝑦𝑖 ≈ 𝑓(𝑥𝑖) with some error.
• Ex: the x-axis coordinates might be time, and the y-axis might be height 

of a tree as a function of time.

• The Mean Squared Error of the model is given by
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• We want to find the model parameters that give the minimum 
mean squared error, so consider the function 𝑆 𝑚, 𝑏 =
𝑀𝑆𝐸 𝑚, 𝑏 . We want to find the minimum of the function 
𝑆(𝑚, 𝑏).



Theorem (linear models)

• Suppose we are given measurements 𝑦1, 𝑦2, … , 𝑦𝑛 at values 

𝑥1, … , 𝑥𝑛. Let ҧ𝑥 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 and ത𝑦 =

1

𝑛
σ𝑖=1
𝑛 𝑦𝑖 be the respective 

averages.

• Then the linear model 𝑓 𝑥 = 𝑚𝑥 + 𝑏 that minimizes the mean 
squared error is given by:

𝑚 =
σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦

σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2

𝑏 = ത𝑦 −𝑚 ҧ𝑥

• Proof involves using the partial derivatives to find the minimum 

of the function 𝑆 𝑚, 𝑠 =
1

𝑛
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.


