Multilinear and Nonlinear Regression Lecture 6c – 2021-06-18

MAT A35 – Summer 2021 – UTSC

Prof. Yun William Yu

Single variable linear regression

• Given samples of the dependent variable $y_1, ..., y_n$ at values of the independent variable $x_1, ..., x_n$, we want to find the linear model f(x) = mx + b such that $y_i \approx f(x_i)$, the "best-fit" line.

Two-variable linear regression

- What if we have multiple independent variables?
- Suppose we are measuring the water temperature in Lake Ontario, and want to know how the temperature varies as a function of location

3D Scatter Plot of temperatures

Best-fit plane

Two-variable linear regression

• Let x and y be the independent variables. Let z be the dependent variable. Given samples z_1, \ldots, z_n at values $(x_1, y_1), \ldots, (x_n, y_n)$, we want the linear model

$$f(x,y) = m_1 x + m_2 y + b$$

such that $z_i \approx f(x_i, y_i)$, the "best-fit" plane.

Multilinear regression

- One independent variable, one dependent variable $M_o del: f(x) = r_x + b$
- Two independent variables, one dependent variable $M_{odel}: f(v,y) = m_1 \times f(m_2 \times f(y)) + m_2 \times f(y) + f(y)$
- Many independent variables, one dependent variable $Model: f\left(\begin{bmatrix}x_{1}\\y_{n}\end{bmatrix}\right) = \begin{bmatrix}m_{1} & \cdots & m_{n}\end{bmatrix}\begin{bmatrix}x_{1}\\y_{n}\end{bmatrix} + b \quad f: \mathbb{R}^{n} \to \mathbb{R}^{p}$ $f: \mathbb{R}^{n} \to \mathbb{R}^{p}$
- Can also have many independent variables, many dependent...

Try it out

79.5 W

43.9 N

• You are measuring the temperature of Lake Ontario as a function of location. You get the following data:

Longitude	Latitude	Temperature	
76.5 W	43.5 N	12.2	
76.5 W	43.9 N	12.1	A: 12.06 B: 12.35 C: 12.54 D: 12.89
77.0 W	43.6 N	11.6	
77.0 W	43.8 N	11.5	
78.0 W	43.3 N	13.7	
78.0 W	43.7 N	13.1	E. None of the above
79.5 W	43.8 N	12.3	

• The GPS coordinates for the lake near Toronto are 43.6 N, 79.3 W. What do you predict the lake water temperature to be near Toronto?

12.1

Nonlinear regression

parabolic fits better (quadratic regression) • What if our data doesn't look linear? - lines tit terribly Cabic equation Cron better

Different types of regression

• Linear regression: f(x) = mx + b

- Quadratic regression: $f(x) = m_2 x^2 + m_1 x + b$ Cubic regression: $f(x) = m_3 x^3 + m_2 x^2 + m_1 x + b$
- Polynomial regression of degree n:

$$f(x) = b + \sum_{i=1}^{n} m_i x^i$$

- Exponential regression: $f(x) = c_1 e^{c_2 x}$
- Power dependencies: $f(x) = c_1 x^{c_2}$

Convert nonlinear to multilinear Quadratic: $f(x) = m_2 x^2 + m_1 x + b$ Let $y = x^2$ $f(x,y) = m_2 y + m_1 x + b$ $\times | Y = x^2 | z = x^3 | f(x)$ Cubic: $f(x) = m_3 x^3 + m_2 x + m_1 x + b$ Let x=x, $y=x^2$, $z=x^3$ $f\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right)$; $\begin{bmatrix} m, m, m, y \end{bmatrix} \times \begin{bmatrix} x \\ y \\ z \end{bmatrix} + b$

Intuition guess

• Linear vs. Quadratic vs Cubic: which model will have smaller Mean Square Error for the following data:

Be careful about too many parameters

- The more parameters you have (e.g. in a polynomial regression), the better your mean squared error will be.
- However, sometimes, you will overfit to the data.
- John von Neumann: "with four parameters, I can fit an elephant, and with five I can make him wiggle his trunk".
 Y
 Y
 More parameters.

Power dependencies $\int_{n} f(x) = \int_{n} c_{1} + \int_{n} x^{c_{2}} = \int_{n} c_{1} + c_{2} \int_{n} x$ $f(x) = c_1 x$ Let z = ln f(x), $m = c_2$, y = ln x, b = ln c, $x = e^{\gamma}$ c, = e^{b} $f(x) = e^{t}$ Z=mytb (near regression hc. y=hx (2=lnf(x) +(x) \times (Ly Los Los depplots