Multilinear and
 Nonlinear Regression Lecture 6c - 2021-06-16
 MAT A35 - Summer 2021 - UTSC
 Prof. Yun William Yu

Single variable linear regression

- Given samples of the dependent variable y_{1}, \ldots, y_{n} at values of the independent variable x_{1}, \ldots, x_{n}, we want to find the linear model $f(x)=m x+b$ such that $y_{i} \approx f\left(x_{i}\right)$, the "best-fit" line.

Two-variable linear regression

- What if we have multiple independent variables?
- Suppose we are measuring the water temperature in Lake Ontario, and want to know how the temperature varies as a function of location

3D Scatter Plot of temperatures

Best-fit plane

Two-variable linear regression

- Let x and y be the independent variables. Let z be the dependent variable. Given samples z_{1}, \ldots, z_{n} at values $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, we want the linear model

$$
f(x, y)=m_{1} x+m_{2} y+b
$$

such that $z_{i} \approx f\left(x_{i}, y_{i}\right)$, the "best-fit" plane.

Multilinear regression

- One independent variable, one dependent variable
- Two independent variables, one dependent variable
- Many independent variables, one dependent variable
- Can also have many independent variables, many dependent...

Try it out

- You are measuring the temperature of Lake Ontario as a function of location. You get the following data:

Longitude	Latitude	Temperature
76.5 W	43.5 N	12.2
76.5 W	43.9 N	12.1
77.0 W	43.6 N	11.6
77.0 W	43.8 N	11.5
78.0 W	43.3 N	13.7
78.0 W	43.7 N	13.1
79.5 W	43.8 N	12.3
79.5 W	43.9 N	12.1

```
A: }12.0
    B: 12.35
    C: 12.54
    D: 12.89
    E: None of the above
```

- The GPS coordinates for the lake near Toronto are $43.6 \mathrm{~N}, 79.3 \mathrm{~W}$. What do you predict the lake water temperature to be near Toronto?

Nonlinear regression

- What if our data doesn't look linear?

Different types of regression

- Linear regression: $f(x)=m x+b$
- Quadratic regression: $f(x)=m_{2} x^{2}+m_{1} x+b$
- Cubic regression: $f(x)=m_{3} x^{3}+m_{2} x^{2}+m_{1} x+b$
- Polynomial regression of degree n :

$$
f(x)=b+\sum_{i=1}^{n} m_{i} x^{i}
$$

- Exponential regression: $f(x)=c_{1} e^{c_{2} x}$
- Power dependencies: $f(x)=c_{1} x^{c_{2}}$

Convert nonlinear to multilinear

Intuition guess

- Linear vs. Quadratic vs Cubic: which model will have smaller Mean Square Error for the following data:

```
A: Linear
B: Quadratic
C: Cubic
D: Same error for All
E: None of the above
```


Be careful about too many parameters

- The more parameters you have (e.g. in a polynomial regression), the better your mean squared error will be.
- However, sometimes, you will overfit to the data.
- John von Neumann: "with four parameters, I can fit an elephant, and with five I can make him wiggle his trunk".

Exponential regression

Power dependencies

