Linear $1^{\text {st }}$ order ODEs and Integrating Factors Lecture 7d - 2021-07-07
 MAT A35 - Summer 2021 - UTSC
 Prof. Yun William Yu

Existence-Uniqueness Theorem

- Consider the $1^{\text {st }}$ order linear ODE initial value problem

$$
y^{\prime}+p(x) y=q(x), \quad y\left(x_{0}\right)=y_{0}
$$

- If p and q are continuous functions on an interval I containing x_{0}, then there exists a unique solution to the IVP for every point in I.
- In a more theoretical ordinary differential equations class, a lot of time is spent on proving various existence theorems, uniqueness theorems, and existence-uniqueness theorems.

Differentials

- Differentials $d x$ and $d y$ are the intuition behind $\frac{d y}{d x}$, and can be thought of as infinitesimal changes along the x - or y-axes.

Ex.

$$
\begin{aligned}
& y^{\prime}=x^{2} \\
& \frac{d y}{d x}=x^{2} \\
& -y-r-x \\
& y=\frac{1}{3} x^{3}+C
\end{aligned}
$$

Let $f(x)=\frac{1}{3} x^{3}$

$$
\begin{aligned}
d[f(x)] & =d\left[\frac{1}{3} x^{3}\right] \\
d f & =x^{2} d x \\
\int d f & =\int x^{2} d x \\
f & =\frac{1}{3} x^{3}+C
\end{aligned}
$$

Differentials of multi-variable functions

- Let $\mathrm{z}=f(x, y)$ be a function of both x and y.
- Recall that the gradient $\nabla f=\left[\begin{array}{ll}\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}\end{array}\right]$ gives the partial derivative in the $u=\left[\begin{array}{l}u_{x} \\ u_{y}\end{array}\right]$ direction by $\nabla f \cdot u$.
- We define the total differential of z by

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

- i.e. $d z=\nabla f \cdot\left[\begin{array}{l}d x \\ d y\end{array}\right]$, where ∇f is the
Gradient

Example of total differential
Ex.

$$
\begin{aligned}
z & =x^{2}+2 x y+y^{4} \\
\frac{d z}{} & =(2 x+2 y) d x+\left(2 x+4 y^{3}\right) d y \\
d z & =2 x d x+2 y d x+2 x d y+4 y^{3} d y
\end{aligned}
$$

Ex.

$$
\begin{aligned}
& f(x, y)=\sin 2 x+y^{2} e^{x} \\
& d f=2 \cos 2 x d x+y^{2} e^{x} d x+2 y e^{x} d y
\end{aligned}
$$

Ex.

$$
\begin{aligned}
z & =x^{2} y^{2} \\
d z= & \frac{\partial}{\partial x}\left[x^{2} y^{2}\right] d x+\frac{\partial}{\partial y}\left[x^{2} y^{2}\right] d y \\
& =2 x y^{2} d x+2 x^{2} y d y
\end{aligned}
$$

Try it out: compute the total differential

$$
\begin{aligned}
& \text { - } f(x, y)=x^{2}+e^{y} \sin x \\
& d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \\
& \frac{\partial}{\partial y}\left[\frac{5 y^{2}}{y-1}\right]=5 x^{2} \frac{\partial}{\partial y}\left[\frac{1}{y-1}\right] \\
& =\left(2 x+e^{y} \cos \right) d x+e^{y} \\
& =5 x^{2} \frac{\partial}{\partial y}\left[(y-1)^{-1}\right] \\
& =5 x^{2} \cdot-1 \cdot(y-1)^{-2} \\
& =\left(2 x+e^{y} \cos x\right) d x+e^{y} \sin x d y \\
& \text { - } z=\frac{5 x^{2}}{y-1}+1 \\
& d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y \\
& d z=\frac{10 x}{y-1} \cdot d x+\frac{-5 x^{2}}{(y-1)^{2}} d y \\
& \text { A: }\left(2 x+e^{y} \cos x\right) d x+e^{y} \sin x d y \\
& \text { B: } x^{2} d x+e^{y} \sin x d y \\
& \text { C: } 2 x d x+e^{y} \cos x d x \\
& \text { D: } 2 x d y+e^{y} \sin x d y \\
& \text { E: None of the above } \\
& \text { A: } \frac{5 x^{2}}{y-1} d x-\frac{5 x^{2}}{(y-1)^{2}} d y \\
& \text { B: } \frac{10 x}{y-1} d x-\frac{5 x^{2}}{y-1} d y \\
& \mathrm{C}: \frac{10 x}{y-1} d x+\frac{5 x^{2}}{(y-1)^{2}} d y \\
& \rightarrow \text { D: } \frac{10 x}{y-1} d x-\frac{5 x^{2}}{(y-1)^{2}} d y \\
& \text { E: None of the above }
\end{aligned}
$$

Reversing a total differential

- $d z=(2 x+2 y) d x+\left(2 x+4 y^{3}\right) d y$
- Solve for $\frac{\partial z}{\partial x}=2 x+2 y$ and $\frac{\partial z}{\partial y}=2 x+4 y^{3}$

$$
z=x^{2}+2 x y+y^{4} \quad(+C)
$$

Try it out: Find z such that

$$
\begin{aligned}
& \text { - } d z=\left(2 x y \cdot e^{x^{2} y}\right) d x+\left(x^{2} \cdot e^{x^{2} y}+5\right) d y \\
& z=\int^{\swarrow} 2 x e^{x^{2} y} d x \quad z=\int\left(x^{2} e^{x^{2} y}+5\right) d y \\
& z=e^{x^{2} y}+F(y) \quad z=e^{x^{2} y}+5 y+G(x)
\end{aligned}
$$

Sometimes, reversing fails

$$
\begin{aligned}
\cdot d z & =y^{2} d x+x^{2} d y \\
& \downarrow \\
z & =\int y^{2} d x \quad z=\int x^{2} d y \\
z & =x y^{2}+F(y)
\end{aligned} \quad \neq z=x^{2} y+G(y) \quad l
$$

$d z$ is NOT EXACT

Exact differential

- A differential

$$
d z=P(x, y) d x+Q(x, y) d y
$$

is an exact differential if there exists a function $f(x, y)$ such that $P(x, y)=\frac{\partial f}{\partial x}$ and $Q(x, y)=\frac{\partial f}{\partial y}$. Then $z=f(x, y)$.

- In other words, an exact differential is any differential that is the total differential of some function.
- An inexact differential is a differential we write down that is not the total differential of any function.

Differential test for exactness

- One way to test for exactness is to try to reverse the differential; this will always work, but involves a lot of integration.
- There is a faster test that only involves differentiation.
- Recall that for most nice functions $\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}$.
- Therefore, quick way to see if a differential

$$
d z=P(x, y) d x+Q(x, y) d y
$$

is exact is to check if $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$

$$
\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial x}\right] \quad \frac{\partial}{\partial x}\left[\frac{\partial f}{\partial y}\right]
$$

Example

$$
\begin{aligned}
& \text { Ex. } d z=\underbrace{\frac{10 x}{y^{-1}}}_{P(x, y)} d x-\underbrace{-\frac{5 x^{2}}{(y-1)^{2}}}_{Q(x, y)} d y \\
& \frac{\partial P}{\partial y}=\frac{-10 x}{(y-1)^{2}} \quad \frac{\partial Q}{\partial y}=\frac{-10 x}{(y-1)^{2}} \quad \text { Exact } \\
& \text { Ex, } d z=\underbrace{\left(5 x^{2}+1\right)}_{P(x, y)} d x+\underbrace{x y^{2}}_{Q(x, y)} d y \\
& \frac{\partial P}{\partial y}=0 \quad \frac{\partial Q}{\partial x}=y^{2} \quad \begin{array}{l}
\text { Not } \\
\text { epcot }
\end{array}
\end{aligned}
$$

Try it out: exact or inexact?

- $d z=x d x+y d y$

$$
\frac{\partial}{\partial y}[x]=0 \quad \frac{\partial}{\partial x}[y]=0
$$

Exact. $z=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}$

- $d z=y d x+x d y$

$$
\begin{aligned}
& z=y d x+x d y \\
& \frac{\partial}{\partial y}[y]=1=\frac{\partial}{\partial x}[x]=1 \quad \text { Exact. } \quad z=x y
\end{aligned}
$$

- $d z=x d x+y^{2} d y$

$$
\begin{aligned}
& =x d x+y^{2} d y \\
& \frac{\partial}{\partial y}[x]=0 \quad \frac{\partial}{\partial x}\left[y^{2}\right]=0 \quad \text { Exact, } \quad z=\frac{1}{2} x^{2}+\frac{1}{3} y^{3}
\end{aligned}
$$

A: exact
B: inexact
C: both exact and inexact
D: ???
E: None of the above

- $d z=y^{2} d x+x d y$
$\frac{\partial}{\partial y}\left[y^{2}\right]=2 y \neq \frac{\partial}{\partial x}[x]=1 \quad$ Inexact.
- $d z=(x+y) d x+(x+y) d y$

$$
\begin{aligned}
& =(x+y) d x+(x+y) d y \\
& \frac{\partial}{\partial y}[x+y]=1 \quad \frac{\partial}{\partial x}[x+y]=1 \quad \underline{E x+c t} \quad z=\frac{1}{2}(x+y)^{2}
\end{aligned}
$$

Solving exact differential equations

$$
\begin{aligned}
& \begin{array}{c}
\frac{d y}{d x}=\frac{-2 x y}{x^{2}+1} \\
\frac{\left(x^{2}+1\right) d y=-2 x y d x}{2 x y d x+\left(x^{2}+1\right) d y}=0 \\
\frac{\partial}{d y}\left[2 x y=2 x \frac{\partial}{\partial x}\left[x^{2}+1\right]=2 x\right.
\end{array} \\
& \Rightarrow \text { exact } \\
& \iiint 2 x y d x=x^{2} y+F(y) \\
& \left\{\int\left(x^{2}+1\right) d y=x^{2} y+y+G(x)\right. \\
& \Rightarrow f(x, y)=x^{2} y+y \quad f=x^{2} y+y \\
& d f=2 x y d x+\left(x^{2}+1\right) d y=0 \\
& \Rightarrow d f=0 \\
& \int d f=f+C=\int 0=0 \\
& \Rightarrow x^{2} y+y^{2}+C=0 \\
& \Rightarrow\left(x^{2}+1\right) y=C \\
& \Rightarrow y=\frac{C}{x^{2}+1}
\end{aligned}
$$

Integrating factors

- Sometimes, we can find an "integrating factor" $I(x)$ to multiply by both sides of an inexact ODE to make it an exact ODE.

$$
\begin{aligned}
& \text { Ex. } \quad x y^{\prime}+2 y=5 x^{3} \\
& \left.\left\{\begin{array}{l}
\text { Let } I(x)=x \\
\text { Multiply by } I(x) \\
\lambda 2 x y d x+x^{2} d y=5 x^{4} d x \\
\frac{\partial}{\partial y}[2 x y]=2 x \frac{\partial}{\partial x}\left[x^{2}\right]=2 x \\
\Rightarrow e x^{2} \text { at } \\
\text { Let } f(x, y)=x^{2} y \\
\Rightarrow \int d f=\int 5 x^{4} d x
\end{array}\right]=x^{2} y=x^{5}+C\right] \\
& x \cdot \frac{d y}{d x}+2 y=5 x^{3} \\
& \begin{array}{r}
x-d y+2 y d x=5 x^{3} d x \\
2 y d x+x d y=5 x^{3} d x
\end{array} \\
& \frac{\partial}{\partial y}\left[l_{y}\right]=L \neq \frac{\partial}{\partial x}[x]=1 \\
& \text { NOT EXACT }
\end{aligned}
$$

Try it out:

- Given the inexact differential equation

$$
2 d x=\frac{1}{x^{2}} d x+\frac{1}{x y} d y
$$

- Which of the following is an integrating factor $I(x)$?

$$
\begin{aligned}
2 x d x & =\frac{1}{x} d x+\frac{1}{y} d y \\
\frac{\partial}{\partial y}\left[\frac{1}{x}\right]=0 & =\frac{\partial}{\partial x}\left[\frac{1}{y}\right] \quad \checkmark \quad \text { Exact }
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{2} d x=d x+\frac{x}{y} d y \\
& \frac{\partial}{\partial y}[1]=0 \neq \frac{\partial}{\partial x}\left[\frac{x}{y}\right]=\frac{1}{y} \quad \text { Not } \quad \text { exact } \\
& 2 x y d x=\frac{y}{x} d x+d y \\
& \frac{\partial}{\partial y}\left[\frac{y}{x}\right]=\frac{1}{x} \neq \frac{\partial}{\partial x}[1]=0
\end{aligned}
$$

$$
\frac{A: x}{}
$$

$$
\mathrm{C}: x y
$$

D: All of the above

$$
\mathrm{E} \text { : None of the above }
$$

$$
\frac{\partial}{\partial y}\left[\frac{y}{x}\right]=\frac{1}{x} \not f \frac{\partial}{\partial x}[1]=0 \text { Nut exact }
$$

Integrating factors

- Fact 1: every first-order ODE can be turned into an exact differential using an integrating factor.
- Fact 2: there is NO systematic way of guessing integrating factors for general ODEs.
- In MATA35, we will not expect you to use integrating factors outside of a few special cases where the integrating factors are known, or where we give you a hint.

Integrating Factor for linear $1^{\text {stt-order }}$ ODE

- If you rewrite a linear $1^{\text {st }}$-order ODE in the following form:

$$
y^{\prime}+p(x) y=q(x)
$$

which is equivalent to

$$
d y+d x[p(x) y]=q(x) d x
$$

- Then the integrating factor is

$$
\begin{aligned}
& \frac{E x}{\frac{1}{x}} \int \begin{array}{l}
x y^{\prime}+2 y=5 x^{3} \\
y^{\prime}+\frac{2}{x} y=5 x^{2}
\end{array} \\
& \begin{array}{l}
d x \int y^{\prime}+\frac{2}{x} y=5 x \\
d y+\frac{2}{x} \cdot y d x=5 x^{2} d x
\end{array} \\
& d x\left[\frac{2}{x} \cdot y\right]+d y=5 x^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& e^{\int \frac{p(x) d x}{r}} \quad I(x)=e^{\int \frac{x^{2}}{x} d x}=e^{2 \ln |x|}=e^{\ln x^{2}} \\
& I(x)=x^{2} \\
& \text { A } \underbrace{d x[2 x y]+d y\left[x^{2}\right]}=5 x^{4} d x
\end{aligned}
$$

General solution for $1^{\text {st }}$-order ODE

- If you rewrite a linear $1^{\text {st }}$-order ODE in the following form:

$$
y^{\prime}+p(x) y=q(x)
$$

- The general solution can be found by:
- Determining the integrating factor $I(x)=e^{\int p(x) d x}$
- Multiply both sides by $I(x): y^{\prime} \cdot I(x)+p(x) y \cdot I(x)=q(x) \cdot I(x)$
- Multiply both sides by $d x$: $d y \cdot I(x)+p(x) y \cdot I(x) d x=q(x) I(x) d x$
- The left hand side is the total differential $d[I(x) y]$
- So we can integrate both sides to get $I(x) y=\int q(x) I(x) d x$
- Then $y=\frac{1}{I(x)}\left[\int q(x) I(x) d x+C\right]$
- In a single, ugly, long equation:

$$
y(x)=e^{-\int p(x) d x}\left[\int e^{\int p(x) d x} d x+C\right]
$$

Try it out

$$
\cdot y^{\prime}-\underbrace{2} y=x^{2}
$$

$$
I(x)=e^{\int-3 x^{2} d x}=e^{-x^{3}}
$$

$$
y e^{-x^{3}}=-\frac{1}{3} e^{-x^{3}}+C
$$

$$
\begin{aligned}
& 1(x)=e=e \\
& -3 x^{2} y+\frac{d y}{d x}=x^{2} \overbrace{r_{-x^{3}}}=-\frac{1}{3} e^{-u}+C
\end{aligned}
$$

$$
\begin{aligned}
& -3 x^{2} y+\frac{d y}{d x}=x^{2} \\
& \int\left[-3 x^{2} e^{-x^{3}} y d x+e^{-x^{3}} d y\right]=\int_{-x^{3}} x^{2} e^{-x^{3}} d x=-\frac{1}{3} e^{-x^{3}}+C
\end{aligned}
$$

$$
y=-\frac{1}{3}+C e^{x} \rightarrow \begin{aligned}
& \mathrm{C}:-\frac{1}{3} e^{x^{3}+C} \\
& \mathrm{D}:-\frac{1}{3}+C e^{x^{3}} \\
& \mathrm{E}: \text { None of the }
\end{aligned}
$$

$$
\begin{aligned}
& \int x^{2} e^{-x^{3}} d x \\
& u=x^{3} \\
& d u=3 x^{2} d x \\
& =\frac{1}{3} \int e^{-u} d u \\
& \text { A: }-\frac{1}{3}+e^{x^{3}}+C \\
& \text { B: }-\frac{1}{3} e^{x^{3}}+C \\
& \mathrm{E} \text { : None of the above }
\end{aligned}
$$

