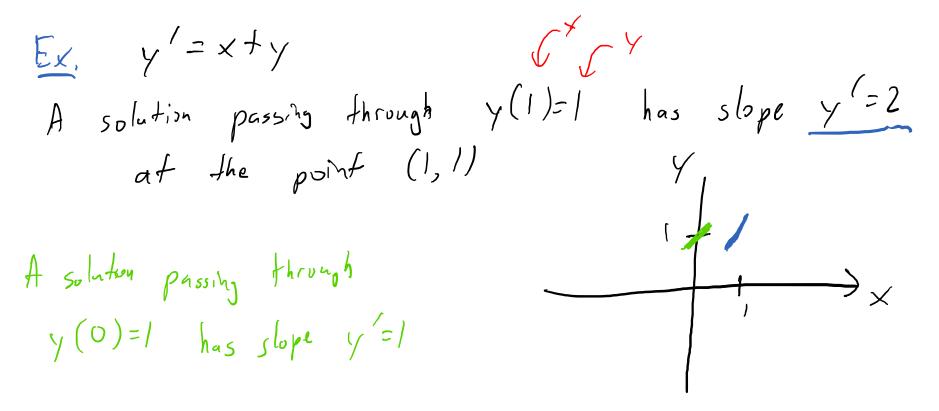
Direction fields, autonomous ODEs, and the phase line Lecture 7e – 2021-07-07

MAT A35 – Summer 2021 – UTSC Prof. Yun William Yu

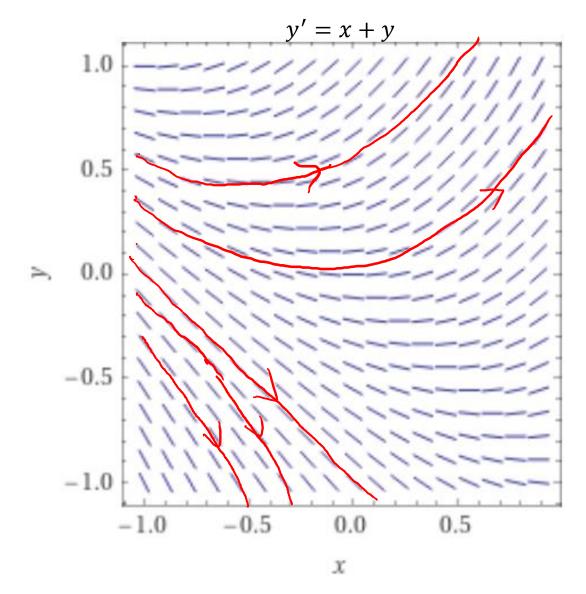
1st-order ODEs and slopes of solutions

- We can write a 1st-order ODE as y' = f(x, y)
- Recall that the derivative can be thought of as the slope of a solution.



Direction field

- A direction field graphs out the slopes of all solutions going through a point.
- We can visualize different solutions by drawing trajectory curves that are always tangent to the direction field.



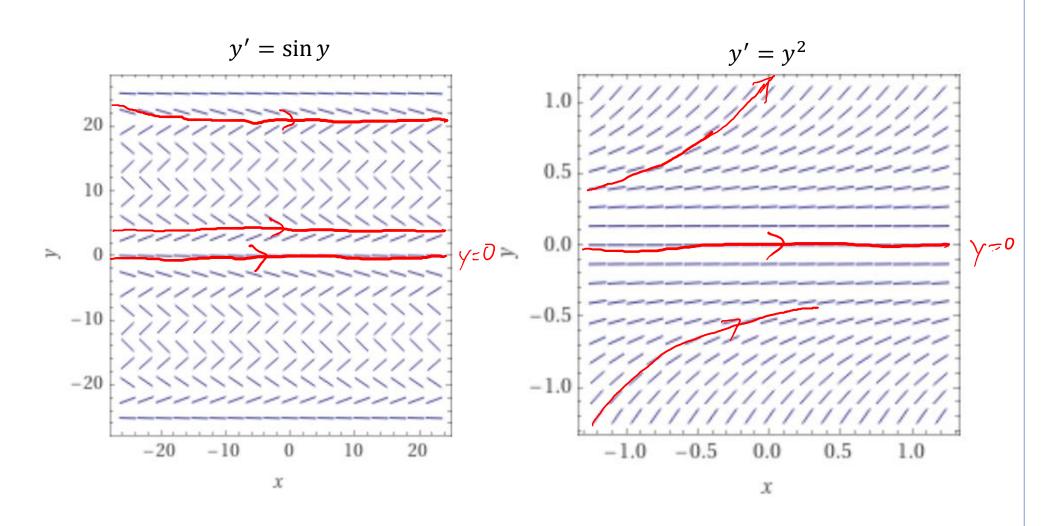
Autonomous ODEs

- Recall that an autonomous ODE is one that does not have an explicit dependence on the independent variable (e.g. time).
- A first-order autonomous ODE can be rewritten in the form: y' = f(y)

Ex.
$$y'' + y' + y = 0$$
 - 2nd order antonomous
Ex. $(y')^2 - \sin y - 1 = 0$ - 1st order antonomous
=) $(y')^2 = \sin y + 1$
 $y' = \int \sin y + 1$ - 5 landard form

Direction fields of autonomous ODEs

• Notice that if y' = f(y), then the slope has no x-dependence.



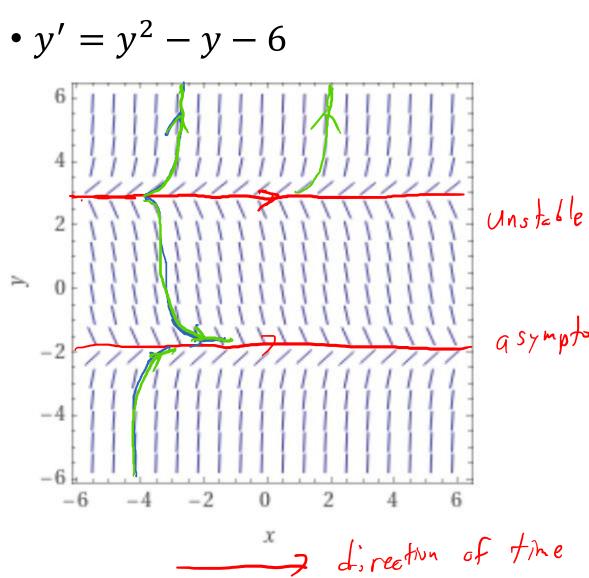
Equilibrium values

- An equilibrium value of the autonomous ODE y' = f(y) is a constant solution y = c.
- We can solve for equilibrium values by setting y'=0.

Ex.
$$y'=y^2=0$$

=> $y=0$ is the only equilibrium solution

Try it out: find the equilibrium values



$$y^{2}-y-6=0$$

 $(y-3)(y+2)=0$
 $y=3,-2$

asymptotically stable

A: -2

B: 3

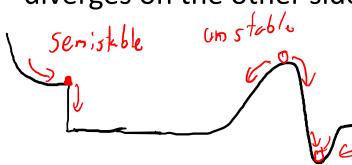
C: All of the above

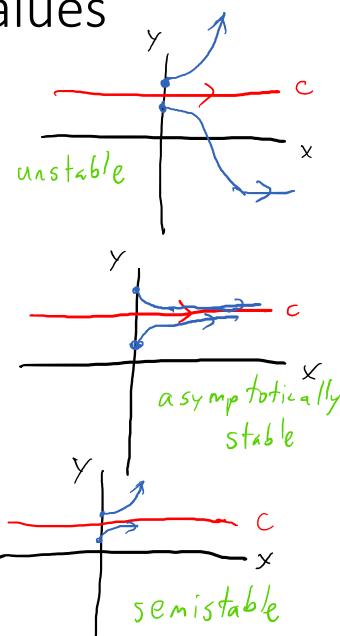
D: ???

E: None of the above

Stability of equilibrium values

- Consider an equilibrium value c of y' = f(y), and an initial value $y(0) = y_0$, where $y_0 \approx c$, but $y_0 \neq c$. Then c is
 - Unstable if y diverges from c as time $x \to \infty$
 - Asymptotically stable if $y(x) \rightarrow c$ as $x \rightarrow \infty$
 - Semi-stable if as $x \to \infty$, y(x) goes to c on one side, but diverges on the other side.





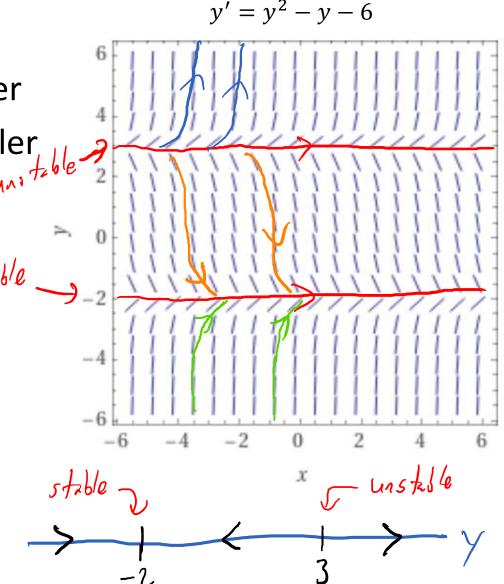
Determining stability using sign of y'

- y' = 0 at equilibrium.
- y' > 0 implies y(x) gets bigger
- y' < 0 implies y(x) gets smaller,

Ex.
$$y'=y^2-y-6$$

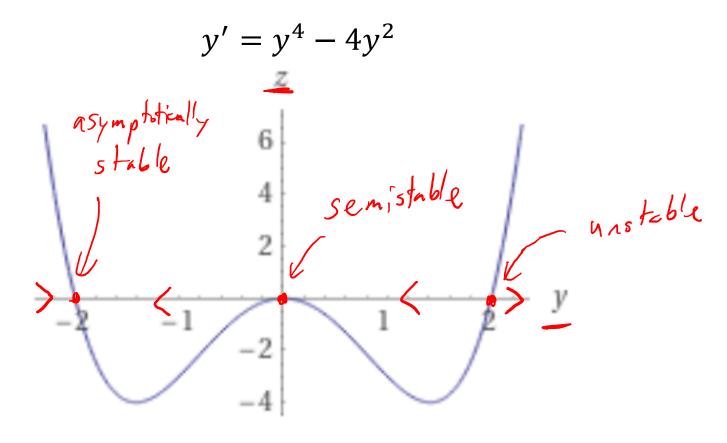
 $y'=(y-3)(y+2)$
 $y<-2: y'=(-)(-)=(+)$

$$3 < y \qquad y' = (+)(+) = (+)$$



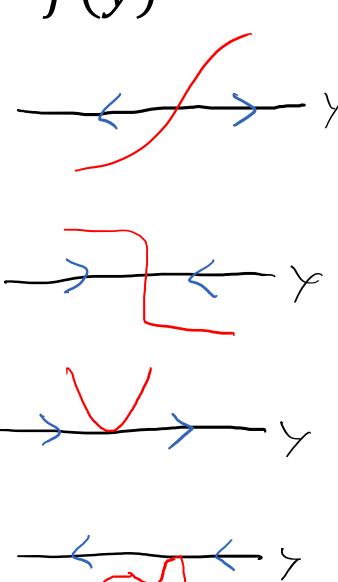
Phase line

• Draw arrows along the y-axis depending on if z = f(y) = y' is positive or negative.



Phase line stability of y' = f(y)

- If z = f(y) crosses the y-axis at f(c) = 0 going upward, then c is unstable.
- If z = f(y) crosses the y-axis at f(c) = 0 going downward, then c is asymptotically stable.
- If z = f(y) touches the y-axis at f(c) = 0, but remains on the same side of the y-axis, then c is semi-stable.



Try it out

•
$$y' = y^5 - 3y^4 - 4y^3 + 12y^2$$

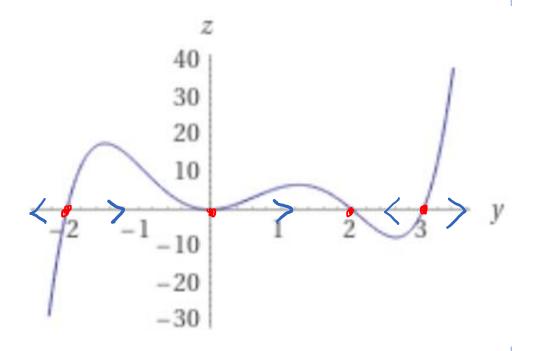
 Classify the stability of the following equilibria:

•
$$y = -2$$
 unstable

•
$$y = 0$$
 Senistable

•
$$y = 2$$
 asymptot; early stable

•
$$y = 3$$
 unstable



A: Asymptotically stable

B: Unstable

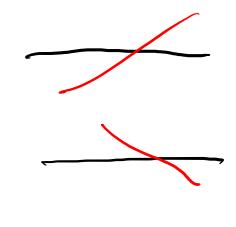
C: Semi-stable

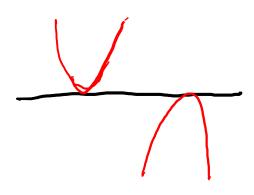
D: ???

E: None of the above

Derivative test for stability

- Let y' = f(y) have an equilibrium at f(c) = 0.
- If $\frac{df}{dy}(c) > 0$, then y = c is unstable.
- If $\frac{df}{dy}(c) < 0$, then y = c is asymptotically stable.
- If $\frac{df}{dy}(c) = 0$ and c is a local extremum (max or min) of f(y), then y = c is semistable





Example

• $y' = y^5 - 3y^4 - 4y^3 + 12y^2$ has equilibria -2, 0, 2, 3 $\frac{df}{dy} = 5y^4 - 12y^3 - 12y^2 + 24y$ $\frac{df}{dy} (-2) = 80 + 96 - 48 - 48$ = 80 > 0 $\frac{d^2f}{dy^2} = 20y^3 - 36y^2 - 24y + 24$ = 80 > 0 = 80 > 0 = 80 > 0 = 80 > 0 $\frac{df}{dy}(0)=0$ $\frac{d^2f}{dy^2}=24, so 0 is a local min of f(y)$ so 0 is semistable 1f(2)=-16, so 2 is stable $\frac{df}{df}(3) = 45$, 50 $\frac{3}{3}$ is unstable $\frac{30}{20}$

Try it out

• Fat crystallization: Let y(x) be the proportion of crystallizable milk fat in a sample after xhours, satisfying $y' = 8(y^5 - y)$

• If you start with half of the fat as crystallizable, how much fat is y^{c-1} crystallizable as time goes to ∞ ? $y'=(-)^{(+)(-)(-)}=(-)$

 $y' = 0 = 8(y^{5} - y)$ $0 = y(y^{4} - 1)$ $0 = y(y^{2} + 1)(y^{2} - 1)$ $0 = y(y^{2} + 1)(y + 1)(y - 1)$ Equilibria: y = -1, 0, 1

https://commons.wikimedia.org/wiki/File:Glass_of_milk.jpg

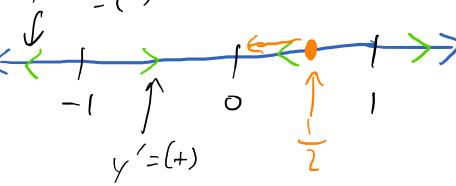
A: All of the fat

B: Half of the fat

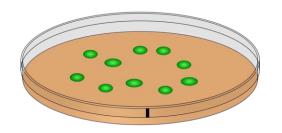
C: None of the fat

D: ???

E: None of the above



Logistic Growth Model

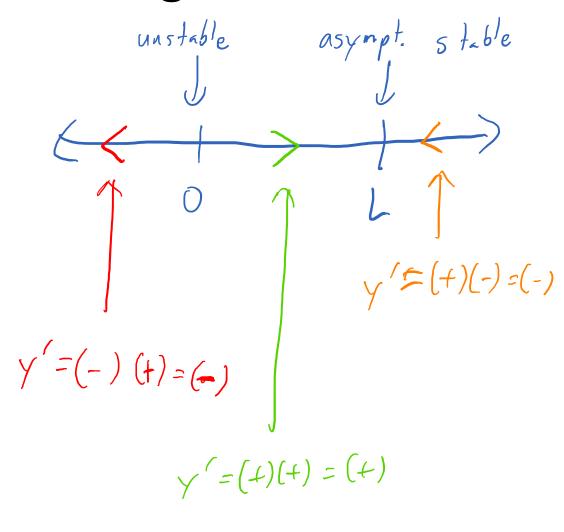


- Previously, we saw exponential growth y'=ky, $y(0)=y_0$, which had a solution $y(x)=y_0e^{kx}$.
- In practice, this is unrealistic. For example, bacteria in a petri dish will initially grow almost exponentially, but then they'll use up all the available media.
- A better model is the logistic model, $y' = ky\left(1 \frac{y}{L}\right)$, where the parameter L is the carrying capacity of the environment, and k > 0 is still the growth rate.

Stability of equilibria of logistic model

•
$$y' = ky \left(1 - \frac{y}{L}\right)$$
 $y' = 0 = ky \left(\left(-\frac{y}{L}\right)\right)$
 $y = 0$
 $y = 0$
 $y = 1 - \frac{y}{L} = 0$
 $y = 1 - \frac{y}{L} = 0$

Two equilibria: O and L



Logistic model behavior

•
$$y' = ky \left(1 - \frac{y}{L}\right)$$

- y < 0 is not physical, since we cannot have negative bacteria.
- When 0 < y < L, y' > 0, so the number of bacteria increase, up to L.
- When y > L, y' < 0, so the number of bacteria decrease, down to L.
- On large time-scales, we therefore have *L* bacteria.

