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15-order ODEs and slopes of solutions

* We can write a 1s*-order ODE as y' = f(x, y)

* Recall that the derivative can be thought of as the slope of a
solution.




Direction field

* A direction field S e o A AN AR BN
graphs out the slopes A AAAR AN
of all solutions going i [ Semmamememam ettt i F AT ]
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https://www.wolframalpha.com/input/?i=slope+field+of+y%27%3Dx%2By




Autonomous ODEs

* Recall that an autonomous ODE is one that does not have an
explicit dependence on the independent variable (e.g. time).

e A first-order autonomous ODE can be rewritten in the form:

y' =1




Direction fields of autonomous ODEs

* Notice that if y' = f(y), then the slope has no x-dependence.

y' =siny y' = y?
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Equilibrium values

* An equilibrium value of the autonomous ODE y’' = f(y) is a
constant solution y = c.

* We can solve for equilibrium values by setting y' = 0.




Try it out: find the equilibrium values
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C: All of the above

D: ???

A:
B

E: None of the above
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Stability of equilibrium values

* Consider an equilibrium value ¢
of y' = f(y), and an initial
value y(0) = y,, where y, = c,
but yo # c. Thenc is

* Unstable if y diverges from c as
time x — oo

* Asymptotically stable if y(x) — ¢
as x — oo

« Semi-stable if as x — oo, y(x)
goes to ¢ on one side, but
diverges on the other side.




Determining stability using sign of y’
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* y' > 0 implies y(x) gets bigger
e y' < 0 implies y(x) gets smaller

e y' = 0 at equilibrium.
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Phase line

* Draw arrows along the y-axis dependingonif z = f(y) = y'is
positive or negative.
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Phase line stability of y' = f(y)

* If z = f(y) crosses the y-axis at
f(c) = 0 going upward, then c is
unstable.

* If z = f(y) crosses the y-axis at
f(c) = 0 going downward, then
c is asymptotically stable.

* If z = f(y) touches the y-axis at
f(c) = 0, but remains on the
same side of the y-axis, then c is
semi-stable.




Try it out
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* Classify the stability of the | g
following equilibria: /2

° y — _2 .‘ 24
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° y — 2
° y — 3
A: Asymptotically stable
B: Unstable
C: Semi-stable
D: ???

E: None of the above




Derivative test for stability

* Let y' = f(y) have an equilibrium at

fc) =0.
o |f %(C) > 0, then y = c is unstable.

o |f %(c) < 0, then y = c is asymptotically
stable.

d .
o |f é(c) = 0 and c is a local extremum

(max or min) of f(y), then y = c is semi-
stable




Example

e y' =y> — 3y* — 4y3 + 12y? has equilibria -2, 0, 2, 3




Try it out

* Fat crystallization: Let y(x) be
the proportion of crystallizable
milk fat in a sample after x
hours, satisfying

y' =8y°—y)
* If you start with half of the fat as

crystallizable, how much fat is
crystallizable as time goes to o?

A: All of the fat

B: Half of the fat

C: None of the fat

D: ?7??

E: None of the above




Logistic Growth Model

* Previously, we saw exponential growth y' = ky, y(0) = y,,
which had a solution y(x) = y,e**.

* In practice, this is unrealistic. For example, bacteria in a petri
dish will initially grow almost exponentially, but then they’ll use
up all the available media.

* A better model is the logistic model, y' = ky (1 — %), where the

parameter L is the carrying capacity of the environment, and
k > 0 is still the growth rate.




Stability of equilibria of logistic model

=iy (1-)




Logistic model behavior

=iy (1-2)

* y < 0is not physical, since we
cannot have negative bacteria.

*When0 <y <L,y >0,so0
the number of bacteria
increase, up to L.

* Wheny > L,y <0, sothe
number of bacteria decrease,
down to L.

* On large time-scales, we
therefore have L bacteria.




