Direction fields, autonomous ODEs, and the phase line Lecture 7e – 2021-07-07

MAT A35 – Summer 2021 – UTSC

Prof. Yun William Yu

1st-order ODEs and slopes of solutions

- We can write a 1st-order ODE as y' = f(x, y)
- Recall that the derivative can be thought of as the slope of a solution.

Direction field

- A direction field graphs out the slopes of all solutions going through a point.
- We can visualize different solutions by drawing trajectory curves that are always tangent to the direction field.

https://www.wolframalpha.com/input/?i=slope+field+of+y%27%3Dx%2By

Autonomous ODEs

- Recall that an autonomous ODE is one that does not have an explicit dependence on the independent variable (e.g. time).
- A first-order autonomous ODE can be rewritten in the form: y' = f(y)

Direction fields of autonomous ODEs

• Notice that if y' = f(y), then the slope has no x-dependence.

Equilibrium values

- An equilibrium value of the autonomous ODE y' = f(y) is a constant solution y = c.
- We can solve for equilibrium values by setting y' = 0.

Try it out: find the equilibrium values

A: -2	
B: 3	
C: All of the above	
D: ???	
E: None of the above	

Stability of equilibrium values

- Consider an equilibrium value cof y' = f(y), and an initial value $y(0) = y_0$, where $y_0 \approx c$, but $y_0 \neq c$. Then c is
 - Unstable if y diverges from c as time $x \to \infty$
 - Asymptotically stable if $y(x) \rightarrow c$ as $x \rightarrow \infty$
 - Semi-stable if as x → ∞, y(x) goes to c on one side, but diverges on the other side.

Determining stability using sign of y'

- y' = 0 at equilibrium.
- y' > 0 implies y(x) gets bigger
- y' < 0 implies y(x) gets smaller

Phase line

• Draw arrows along the y-axis depending on if z = f(y) = y' is positive or negative.

Phase line stability of y' = f(y)

- If z = f(y) crosses the y-axis at f(c) = 0 going upward, then c is unstable.
- If z = f(y) crosses the y-axis at f(c) = 0 going downward, then c is asymptotically stable.
- If z = f(y) touches the y-axis at f(c) = 0, but remains on the same side of the y-axis, then c is semi-stable.

Try it out

•
$$y' = y^5 - 3y^4 - 4y^3 + 12y^2$$

• Classify the stability of the following equilibria:

• *y* = 3

A: Asymptotically stable B: Unstable C: Semi-stable D: ??? E: None of the above

Derivative test for stability

- Let y' = f(y) have an equilibrium at f(c) = 0.
- If $\frac{df}{dy}(c) > 0$, then y = c is unstable.
- If $\frac{df}{dy}(c) < 0$, then y = c is asymptotically stable.
- If $\frac{df}{dy}(c) = 0$ and c is a local extremum (max or min) of f(y), then y = c is semistable

Example

• $y' = y^5 - 3y^4 - 4y^3 + 12y^2$ has equilibria -2, 0, 2, 3

Try it out

- Fat crystallization: Let y(x) be the proportion of crystallizable milk fat in a sample after xhours, satisfying $y' = 8(y^5 - y)$
- If you start with half of the fat as crystallizable, how much fat is crystallizable as time goes to ∞?

https://commons.wikimedia.org/wiki/File:Glass_of_milk.jpg

A: All of the fat B: Half of the fat C: None of the fat D: ??? E: None of the above

Logistic Growth Model

- Previously, we saw exponential growth y' = ky, $y(0) = y_0$, which had a solution $y(x) = y_0 e^{kx}$.
- In practice, this is unrealistic. For example, bacteria in a petri dish will initially grow almost exponentially, but then they'll use up all the available media.
- A better model is the logistic model, $y' = ky \left(1 \frac{y}{L}\right)$, where the parameter *L* is the carrying capacity of the environment, and k > 0 is still the growth rate.

Stability of equilibria of logistic model

•
$$y' = ky\left(1 - \frac{y}{L}\right)$$

Logistic model behavior

•
$$y' = ky\left(1 - \frac{y}{L}\right)$$

- y < 0 is not physical, since we cannot have negative bacteria.
- When 0 < y < L, y' > 0, so the number of bacteria increase, up to L.
- When y > L, y' < 0, so the number of bacteria decrease, down to L.
- On large time-scales, we therefore have *L* bacteria.