Numerical solutions:

Euler's Method and Runge-Kutta

 Lecture 8c: 2021-07-14MAT A35 - Summer 2021 - UTSC Prof. Yun William Yu

Recall: Riemann Sums

- For any integral problem, we can approximate it with lots of little rectangles. The approximation gets better the more rectangles we have.

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \\
& \widetilde{\sim} \text { signet area } \\
& \text { in rectangles } \\
&= \sum_{i=1}^{n} \Delta x f\left(x_{i}\right)
\end{aligned}
$$

Recall: direction fields

- Direction fields tell you what direction a solution to the ODE goes.
- We can approximate a solution to the ODE by starting somewhere and following the direction field.

Euler's Method

- Suppose we have an IVP

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

- Choose a step-size Δx.
- Then $x_{i+1}=x_{i}+\Delta x$
- Let $y_{i+1}=y_{i}+f\left(x_{n}, y_{n}\right) \Delta x$.
- Then $y_{n} \approx y\left(x_{n}\right)$.

$$
\begin{aligned}
y_{i+1}-y_{i} & =f\left(x_{n}, y_{n}\right) \Delta x \\
\Delta y_{i} & =f\left(x_{n}, y_{n}\right) \Delta x \\
\approx d y & =f(x, y) d x
\end{aligned}
$$

Try it out

- Consider $y^{\prime}=y$, where $y(0)=1$. Estimate $y(1)$ using Euler's method with the following step sizes
- $\Delta x=1 \quad\left\{\begin{array}{lll}x_{0}=0 & y_{0}=1 & f=1 \\ x_{1}=1 & y_{1}=1+1.1=2\end{array}\right.$
- $\Delta x=\frac{1}{2}$
- $\Delta x=\frac{1}{3}$

$$
\left.\begin{array}{l}
\left\{\begin{array} { l }
{ x _ { 0 } = 0 \quad y _ { 0 } = 1 \quad f (0 , 1) = 1 } \\
{ x _ { 1 } = \frac { 1 } { 2 } \quad y _ { 2 } = 1 + 1 . 0 . 5 = 1 . 5 } \\
{ x _ { 2 } = 1 }
\end{array} \quad \left(y_{2}=1.5+1.50 .5=2.25\right.\right.
\end{array}\right\} \begin{array}{ll}
x_{0}=0 \quad y(0) \approx y_{0}=1 \quad f=1 \\
x_{1}=\frac{1}{3} \quad y\left(\frac{1}{3}\right) \approx y_{1}=\frac{4}{3} \approx 1 \overline{3} \\
x_{2}=\frac{2}{3} \quad y\left(\frac{2}{3}\right) \approx y_{2}=\left(\frac{4}{3}\right)^{2} \approx 1.7 \overline{7} \\
x_{3}=1 \quad y(1) \approx y_{3}=\left(\frac{4}{3}\right)^{3} \approx 2.370
\end{array}
$$

Errors in Euler's method approximations

- We only use the slope at starting point of the integral, and the errors can accumulate.
- The smaller the step size, the more accurate the approximation, but also requires more computation time.

Recall: Trapezoid rule

- We can reduce the error of an integral by using both endpoints of an interval.

$$
\int_{a}^{b} f(x) d x
$$

\sim Area in trapezoids

$$
=\sum_{i=1}^{n} \frac{1}{2} \Delta x\left(f\left(y_{i}\right)+f\left(x_{i-1}\right)\right)
$$

Runge-Kutta Family of Methods

- Euler's method is considered $1^{\text {st }}-o r d e r$ Runge-Kutta
- Higher-order Runge-Kutta methods use multiple points to derive a better slope.
Intuition

Problem with intuition

- What's the biggest problem with the intuition on the previous slide?
- A: We don't know where the midpoint is (in terms of (x, y) coordinates).
- B: We know where the midpoint is, but cannot compute the slope there.
- C: We know where the midpoint is, but its slope is not always a good estimate of the true slope. K secorcary problem
- D: Computing the midpoint takes a lot of computation.
- E: None of the above

Runge-Kutta - naïve $2^{\text {nd }}$ order midpoint

https://www.wolframalpha.com/input/?i=slope+field+of+y\'\%3Dx\%2By

Runge-Kutta - naïve $2^{\text {nd }}$ order midpoint

- Suppose we have an IVP

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

- Choose a step-size Δx. Then $x_{i+1}=x_{i}+\Delta x$.
- Let $k_{1}=f\left(x_{i}, y_{i}\right)$.
- Let $k_{2}=f\left(x_{i}+\frac{\Delta x}{2}, y_{i}+\frac{k_{1} \Delta x}{2}\right)$-slope at guessed midget
- Let $\underbrace{y_{i+1}=y_{i}+k_{2} \Delta x}_{\text {using }}$.
slope at guessed midpoint

Classic Runge-Kutta $-4^{\text {th }}$ order

- Suppose we have an IVP

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

- Choose a step-size Δx. Then $x_{i+1}=x_{i}+\Delta x$.
- Let $k_{1}=f\left(x_{i}, y_{i}\right)$.

- Let $k_{2}=f\left(x_{i}+\frac{\Delta x}{2}, y_{i}+\frac{k_{1} \Delta x}{2}\right)-$ slope at guessed ${ }^{n}$ based on k_{1}
- Let $k_{3}=f\left(x_{i}+\frac{\Delta x}{2}, y_{i}+\frac{k_{2} \Delta x}{2}\right)$
- Let $k_{4}=f\left(x_{i}+\Delta x, y_{i}+\mathrm{k}_{3} \Delta x\right)$

- Let $y_{i+1}=y_{i}+\underbrace{\frac{1}{6} \Delta x\left(k_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\mathrm{k}_{4}\right)}_{\text {use weighted average of }}$

Concluding remarks

- Like integrals, solving ODEs explicitly is often hard, and sometimes we don't have closed-form solutions.
- Like integrals, solving ODEs numerically is actually much easier, since we can approximate by taking lots of tiny Δx steps.
- Euler's method is similar to Riemann rectangular sums.
- Runge-Kutta ($2^{\text {nd }}$ order) is similar to Trapezoid rule.
- Runge-Kutta (classic, $4^{\text {th }}$ order) is similar to Simpson's rule of thirds.
- In practice, we often solve complicated ODEs using these and other approximations.

