Constant coefficient

 homogeneous higher-order linear ODEs Lecture 9a: 2021-07-16MAT A35 - Summer 2021 - UTSC Prof. Yun William Yu

Recall: linear higher-order ODEs

- Linear ODEs: $a_{n}(x) y^{(n)}+\cdots a_{1}(x) y^{\prime}+a_{0}(x) y=q(x)$, where $a_{i}(x)$ and $q(x)$ are all functions of x.

```
A: Linear
B: Nonlinear
C: Both
D: ???
E : None of the above
```


(In)homogeneous linear ODEs

- Linear ODEs: $a_{n}(x) y^{(n)}+\cdots a_{1}(x) y^{\prime}+a_{0}(x) y=q(x)$, where $a_{i}(x)$ and $q(x)$ are all functions of x.
- If $q(x)=0$, then homogeneous.
- Otherwise, it is inhomogeneous.
- Note, if nonlinear, then neither definition applies.

Constant coefficient linear ODEs

- Linear ODEs: $a_{n}(x) y^{(n)}+\cdots a_{1}(x) y^{\prime}+a_{0}(x) y=q(x)$, where $a_{i}(x)$ and $q(x)$ are all functions of x.
- If $a_{i}(x)=a_{i}$ for some constant a_{i}, then it has constant coefficients
- Otherwise, is does not have constant coefficients
- Note, if nonlinear, this terminology does not apply.

Try it out: homogeneity and coefficients?

- $y^{\prime}+9 y=x^{2}$
- $y^{\prime}-\pi y=0$
- $y^{\prime \prime}+x y^{\prime}+y=0$
- $y^{\prime \prime}+e^{x} y^{\prime}=3$
- $y^{\prime \prime}-2 y+y^{2}=5$
- $\ddot{x}+4 \dot{\mathrm{x}}=-4 x$
- $(\sin x) y^{\prime \prime}+e^{x} y^{\prime}+y=0$
- $x y^{\prime \prime}+y=x^{2}$
- $y^{\prime \prime}+4 y+4=0$

A: Homogeneous, constant coefficients
B: Inhomogeneous, constant coefficients
C: Homogeneous, nonconstant coefficients
D: Inhomogeneous, nonconstant coefficients
E : None of the above

Scaling of sols to homogeneous eq

- Let y_{1} be a sol. to the homogeneous linear ODE

$$
a_{n}(x) y^{(n)}+\cdots a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

- Then $c_{1} y_{1}$ is a solution to the same ODE, where c_{1} is a constant.

Adding sols to homogeneous equation

- Let $y_{1}(x)$ and $y_{2}(x)$ be sol. to the homogeneous linear ODE

$$
a_{n}(x) y^{(n)}+\cdots a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

- Then $y_{1}+y_{2}$ is a solution to the same ODE.

Main Theorems

- Let $y_{1}(x), y_{2}(x), \ldots, y_{n}(x)$ be solutions to the homogeneous linear ODE

$$
a_{n}(x) y^{(n)}+\cdots a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

- Principal of Superposition: then $c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}$ is a solution to the same ODE, where c_{i} are arbitrary constants.
- General solution: If y_{1}, \ldots, y_{n} are linearly independent, then all solutions to the ODE can be written in the form

$$
c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}
$$

so we call that the general solution to the ODE.

Constant coefficient homogeneous sol

- Consider $a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=0$, where a_{i} are constant.
- We can write a characteristic polynomial

$$
p(r)=a_{n} r^{n}+\cdots+a_{1} r+a_{0}
$$

- If λ is a root of the polynomial (i.e. $p(\lambda)=0$), then $e^{\lambda x}$ is a solution to the ODE.
- If λ is a root of the polynomial with multiplicity k, then $x^{k-1} e^{\lambda x}$ is a solution to the ODE.
- Note, we will often call λ an eigenvalue of the ODE, for reasons that will become clear later.

Example

Intuitive proof idea

Try it out

- Which of the following are solutions to

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=0 ?
$$

$\mathrm{A}: e^{-x}$
$\mathrm{~B}: e^{2 x}$
$\mathrm{C}: e^{-x}+5 e^{x}-2 e^{2 x}$
D: All of the above
E : None of the above

Try it out

- What is the general solution to $y^{\prime \prime}+4 y^{\prime}+4 y=0$?

$$
\begin{aligned}
& \text { A: } c_{1} e^{-2 x} \\
& \text { B: } c_{1} x e^{-2 x} \\
& \text { C: } c_{1} e^{-2 x}+c_{2} x e^{-2 x} \\
& \text { D: All of the above } \\
& \text { E: None of the above }
\end{aligned}
$$

- What is the solution to the IVP given $y^{\prime \prime}+4 y^{\prime}+4 y=0$, $y(0)=1, y^{\prime}(0)=2$?

$$
\begin{aligned}
& \text { A: } e^{-2 x}+2 x e^{-2 x} \\
& \text { B: }-\frac{1}{3} e^{-2 x}+\frac{4}{3} x e^{-2 x} \\
& \text { C: }-\frac{1}{2} e^{-2 x}+2 c_{2} x e^{-2 x} \\
& \text { D: All of the above } \\
& \text { E: None of the above }
\end{aligned}
$$

