Nonhomogeneous constant coefficient ODEs Lecture 9d: 2021-07-21

MAT A35 - Summer 2021 - UTSC Prof. Yun William Yu
(In)homogeneous constant coefficient linear ODEs

- Consider $a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=q(x)$, where a_{i} are constant coefficients and $q(x)$ is a functions of x.
- If $q(x)=0$, then homogeneous.
- Otherwise, it is inhomogeneous,

$$
\text { Ex. } \left.\begin{array}{c}
y^{\prime \prime}+4 y^{\prime}+5 y=5 \\
y^{\prime}+7 y=3 x \\
y^{\prime \prime \prime}-y=3 e^{x}
\end{array}\right\}
$$

Solution to inhomogeneous problems

- Consider the inhomogeneous equation

$$
a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=q(x)
$$

- The associated homogeneous equation (which we know how to solve) is:

$$
a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

- If y_{p} is a any "particular" solution to the inhomogeneous equation, and y_{h} is the general solution to the associated homogeneous equation, then $y=y_{p}+y_{h}$ is the general solution to the inhomogeneous equation.

Example

- $y^{\prime \prime}+3 y^{\prime}+2 y=6$

Homogeneous eq: $y^{\prime \prime}+3 y{ }^{r}+2 y=0$

$$
\lambda^{2}+3 \lambda+2=0
$$

$$
(\lambda+1)(\lambda+2)=0
$$

$$
\lambda=-1,-2
$$

$$
y_{h}=c_{1} e^{-x}+c_{2} e^{-2 x}
$$

Particular solution
Guess: $y_{p}=A, A$ constant

$$
\begin{aligned}
y_{p}^{\prime} & =0 \\
y_{p}^{\prime \prime} & =0 \\
0+3 \cdot 0+2 A & =6 \\
\Rightarrow A & \Rightarrow y_{p}=3
\end{aligned}
$$

$$
y_{\text {general }}=y=y_{h}+y_{p}=c_{1} e^{-x}+c_{2} e^{-2 x}+3
$$

Example

- $y^{\prime \prime}+3 y^{\prime}+2 y=e^{-3 x}$
$y_{h}=c_{1} e^{-x}+c_{2} e^{-2 x} \quad$ (from last slide)
Guess:

$$
\begin{array}{ll}
y_{p} & =A e^{-3 x} \\
y_{p}^{\prime} & =-3 A e^{-3 x}
\end{array}
$$

$$
\begin{aligned}
& y_{p}^{\prime}=-3 A e^{-3 x} y_{p}=\frac{1}{2} e \\
& y_{p}^{\prime \prime}=9 A e^{-3 x} \\
& y^{\prime \prime}+3 y_{y}^{\prime}+2 y_{y}=e^{-3 x} \Rightarrow 9 A e^{-3 x}+3 \cdot\left(-3 A e^{-3 x}\right)+2 A e^{-3 x}=e^{-3 x} \\
& y_{\text {gen }}=c_{1} e^{-x}+c_{2} e^{-2 x}+\frac{1}{2} e^{-3 x} \begin{array}{rc}
-3 x & =e^{-3 x} \\
2 A=1 \\
A=\frac{1}{2}
\end{array}
\end{aligned}
$$

Method of undetermined coefficients

- Consider $a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=q(x)$
- Notice that whatever we guess for the particular solution y_{p} we have to take derivatives of it. A reasonable "Ansatz", guess, is y_{p} will "look like" the derivatives of $q(x)$ but with different coefficients.

$$
\text { Ex. } \begin{aligned}
q(x) & =5 x^{2}+2_{x}-1 & y_{p} & =A x^{2}+B x+C \\
q(x) & =e^{2 x}+2 x^{2} & y_{p} & =A e^{2 x}+B x^{2}+C x+D \\
q(x) & =\sin x & y_{p} & =A \sin x+B \cos x
\end{aligned}
$$

Try it out: guess an Ansatz for y_{p}

- $q(x)=\frac{e^{x}}{\bar{J}_{x}}+\frac{e^{2 x}}{e^{\frac{1}{2} 2_{x}}}$
- $q(x)=\begin{aligned} 3\left[\frac{x^{2}}{2}\right. & +\underset{\sin x}{\cos x} \\ & x_{L}^{x} \sin x\end{aligned}$
- $q(x)=\frac{1}{x}$

$$
A e^{x}+B e^{2 x} \longleftrightarrow \begin{aligned}
& \mathrm{A}: A e^{x} \\
& \mathrm{~B}: A e^{2 x} \\
& \mathrm{C}: A e^{x}+B e^{2 x} \\
& \mathrm{D}: A e^{x}+B e^{2 x}+C \\
& \mathrm{E}: \text { None of the above }
\end{aligned}
$$

A: $A x^{2}+B \sin x$
B: $A x^{2}+B \sin x+C \cos x$
C: $A x^{2}+B x+C+D \sin x$
$\mathrm{D}: A x^{2}+B x+C+D \sin x+E \cos x$
E : None of the above
$+D \sin x+E \cos x$
A: $A \ln x+B$
B: $\frac{A}{x}+B$
C: $\frac{A}{x}+\frac{B}{x^{2}}+D$
D: $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+D$
E: None of the above

Ansatz-homogeneous solution collisions

- What if your Ansatz looks like one of the homogeneous solutions?
- Then just like with repeated roots, will need to add an " x ".

Ex. $y^{\prime \prime}+3 y^{\prime}+2 y=e^{-x}$

$$
\begin{aligned}
\text { Ansate } y_{p} & =A_{x} e^{-x} \\
& \xlongequal{n e e d} \text { additional } x
\end{aligned}
$$

Ex. $y^{\prime \prime}+2 y^{\prime}+y_{y}=e^{-x}$
Ansate:

Try it out: guess an Ansatz y_{p}

- $y^{\prime \prime}+3 y^{\prime}+2 y=e^{x}+e^{2 x}$?

A: $A e^{x}+B e^{2 x}$
B: $A x e^{x}+B e^{2 x}$
$\lambda^{2}+3 A+2=0$
$(1+1)(1+2)=0$
$\lambda=-1,-2$

- $y^{\prime \prime}-y=e^{x}+e^{2 x}$
$\lambda^{2}-1=0$

$$
\lambda= \pm 1
$$

C: $A e^{x}+B x e^{2 x}$
D: $A x e^{x}+B x e^{2 x}$
E : None of the above

A: $A e^{x}+B e^{2 x}$
B: $A x e^{x}+B e^{2 x}$
C: $A e^{x}+B x e^{2 x}$

$$
\begin{aligned}
& \lambda= \pm 1 \\
& y_{h}=c_{1} e^{x}+c_{2} e^{-x}
\end{aligned}
$$

D: $A x e^{x}+B x e^{2 x}$
E: None of the above

- $y^{\prime \prime}+y=\sin x$
$A x \sin x+B x \cos x$
A: $A \sin x$
B: $A \sin x+B \cos x$
C: $A x \sin x+B \cos x$
D: $A x \sin x+B x \cos x$
E : None of the above

$$
\begin{aligned}
& \text { Example } \\
& \overbrace{y^{\prime}+2 y=x^{2}}, \underline{y(0)=1} \quad y_{g}=y_{h}+y_{p}=c_{1} e^{-2 x}+\frac{x^{2}}{2}-\frac{x}{2}+\frac{1}{4} \\
& \lambda+2=0 \\
& \lambda=-2 \\
& y_{h}=c, e^{-2 x} \\
& y(0)=1=c_{1}+\frac{1}{4} \\
& \Rightarrow c_{1}=\frac{3}{4} \\
& y_{p}=A x^{2}+B x+C \\
& y_{p}{ }^{\prime}=2 A x+B \\
& \begin{array}{c}
y_{p}{ }^{\prime}+2 y=2 A x+B+2 A x^{2}+2 B x+2 C=x^{2} \\
2 A x^{2}=x^{2} \quad 2 A=1
\end{array} \\
& \left.\left.\left.\begin{array}{c}
2 y=2 x^{2}=x^{2} \\
2 A x+2 B x=0 \\
B+2 C=0
\end{array}\right\} \begin{array}{l}
2 A=1 \\
A+B=0 \\
B+2 C=0
\end{array}\right\} \begin{array}{l}
A=\frac{1}{2} \\
B=-\frac{1}{2} \\
C=\frac{1}{4}
\end{array}\right\} \\
& y=\frac{3}{4} e^{-2 x}+\frac{x^{2}}{2}-\frac{x}{2}+\frac{1}{4}
\end{aligned}
$$

Summary

- Consider $a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=q(x)$
- We can compute the homogeneous solution by looking at roots of the characteristic polynomial $a_{n} \lambda^{n}+\cdots+a_{1} \lambda+a_{0}=0$, and independent solutions will be of the form $e^{\lambda x}$ or $e^{R e(\lambda) x} \cos (\operatorname{Im}(\lambda) x)$ and $e^{R e(\lambda) x} \sin (\operatorname{Im}(\lambda) x)$.
- We can often guess a particular solution by using an Ansatz with undetermined coefficients that looks like the derivatives of $q(x)$. We can then solve for the coefficients.
- The general solution is then given by the homogeneous solution plus any particular solution.
- We can solve an initial value problem by plugging those values back into the general solution.

