Nonhomogeneous constant coefficient ODEs Lecture 9d: 2021-07-21

MAT A35 – Summer 2021 – UTSC

Prof. Yun William Yu

(In)homogeneous constant coefficient linear ODEs

- Consider $a_n y^{(n)} + \dots + a_1 y' + a_0 y = q(x)$, where a_i are constant coefficients and q(x) is a functions of x.
 - If q(x) = 0, then *homogeneous*.
 - Otherwise, it is inhomogeneous

Ex.
$$y'' + 4y' + 5y = 5$$

 $y'' + 7y = 3x$
 $y''' - y = 3e^{x}$

Solution to inhomogeneous problems

• Consider the inhomogeneous equation

$$a_n y^{(n)} + \dots + a_1 y' + a_0 y = q(x)$$

• The associated homogeneous equation (which we know how to solve) is:

$$a_n y^{(n)} + \dots + a_1 y' + a_0 y = 0$$

• If y_p is a any "particular" solution to the inhomogeneous equation, and y_h is the general solution to the associated homogeneous equation, then $y = y_p + y_h$ is the general solution to the inhomogeneous equation.

Example

• y'' + 3y' + 2y = 6Homogeneous eq: y"+3y"+2y=0 12+31+2=0 (2+1)(1+2) = 01 = -1, -2 $Y_{h} = C_{l} e^{-x} + C_{2} e^{-2x}$

Particular solution Guess: Yp=A, A constant Yp'=D $\left(\int_{p}^{l} = 0 \right)$ 0+3-0+2A=6 =7 A=3 =) 1/p = 3

 $Y_{general} = y = y_h + y_p = c_e^{-x} + c_2 e^{-2x} + 3$

Example

• $y'' + 3y' + 2y = e^{-3x}$ $Y_h = c_1 e^{-\chi} + c_2 e^{-2\chi}$ (from last slide) Guess: Yp=Ae⁻³x $\gamma_p = \frac{1}{2} e^{-3x}$ $\gamma_p' = -3Ae^{-3x}$ $\frac{1}{\gamma} \frac{1}{\gamma} \frac{1}$ 2 Ae⁻³× = p. $Y_{gon} = C_{,e} = -x_{+} - 2x_{-} - 2x_{+} - \frac{1}{2}e^{-3x_{+}}$

Method of undetermined coefficients

• Consider
$$a_n y^{(n)} + \dots + a_1 y' + a_0 y = q(x)$$

• Notice that whatever we guess for the particular solution y_p we have to take derivatives of it. A reasonable "Ansatz", guess, is y_p will "look like" the derivatives of q(x) but with different coefficients.

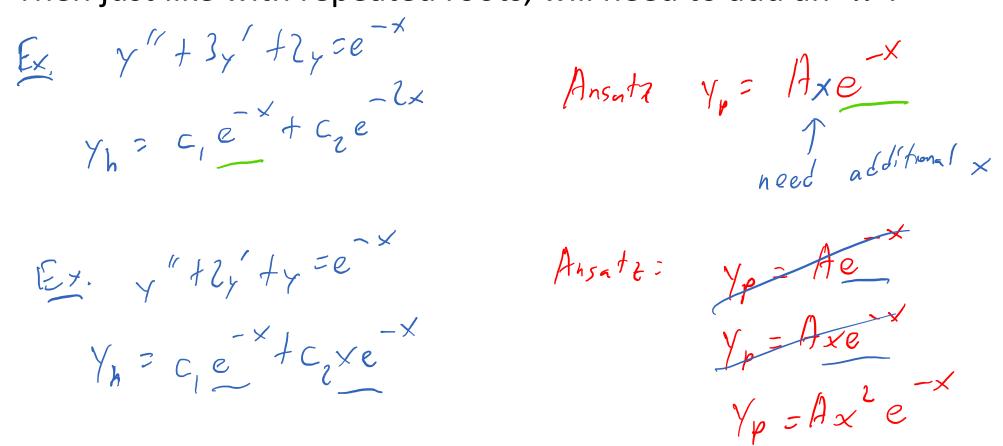
$$E_{x} = q(x) = 5x^{2} + lx - l \qquad \forall p = Ax^{2} + bx + l \\ q(x) = e^{2x} + lx^{2} \qquad \forall p = Ae^{2x} + Bx^{2} + lx + l \\ q(x) = e^{x} + lx^{2} \qquad \forall p = Ae^{x} + Bx^{2} + lx + l \\ q(x) = 5x^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = 5x^{2} \times y^{2} = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + Bcos \times \\ q(x) = b^{2} + lx^{2} \qquad \forall p = Asin \times + b^{2} + lx^{2} + lx$$

Try it out: guess an Ansatz
•
$$q(x) = e^x + e^{2x}$$

 $\int_{a^x} \int_{a^x} \int_{a^x} fe^x + be^{2x}$
 $\int_{a^x} \int_{a^x} fe^x + be^{2x}$
 $G: Ae^x + Be^{2x}$
 $G: Ae^x + Be^{2x}$
 $G: Ae^x + Be^{2x}$
 $G: Ae^x + Be^{2x} + C$
 G

Ansatz-homogeneous solution collisions

- What if your Ansatz looks like one of the homogeneous solutions?
- Then just like with repeated roots, will need to add an "x".



Try it out: guess an Ansatz y_p • $y'' + 3y' + 2y = e^{x} + e^{2x}$? $\lambda^{2} + 3\lambda + 2 = 0$ $(\lambda + 1)(\lambda + 2) = 0$ $Y_{b} = c_{1}e^{-x} + c_{2}e^{-2x}$ A: $Ae^x + Be^{2x}$ B: $Axe^{x} + Be^{2x}$ C: $Ae^{x} + Bxe^{2x}$ D: $Axe^{x} + Bxe^{2x}$ E: None of the above 1=-1,-2 • $y'' - y = e^x + e^{2x}$ $\lambda^2 - \int e^0$ $A \neq e^x + Be^{2x}$ A: $Ae^x + Be^{2x}$ B: $Axe^{x} + Be^{2x}$ C: $Ae^{x} + Bxe^{2x}$ ノニナノ D: $Axe^{x} + Bxe^{2x}$ $y_h = c_1 e^{x} + c_2 e^{-x}$ E: None of the above A: $A \sin x$ • $y'' + y = \sin x$ Ax sinx + Bxcosx $B: A \sin x + B \cos x$ 12 +1 =0 C: $Ax \sin x + B \cos x$ D: $Ax \sin x + Bx \cos x$ オンチェ $Y_h = c_1 s_1 + c_2 c_2 \times$ E: None of the above

 $Y_{3} = Y_{h} + Y_{p} = c_{1}e^{-2x} + \frac{x^{2}}{2} - \frac{x}{2} + \frac{1}{4}$ $Y_{3} = (e^{-1}) + (e^{-1$ Example • $y' + 2y = x^2$, y(0) $\lambda + 2 = 0$ $= \int C_1^2 \frac{s}{t_1}$ J = -S Yh = c, e $-\frac{\chi}{2}+\frac{1}{2}$ $Y = \frac{3}{4}e^{-2x} + \frac{x^4}{2} - \frac{x}{2} + \frac{1}{2}$ Yp=Ax2+Bx+C Yp'= ZAX+B $Y_p' + 2_y = 2A_x + B + 2A_x^2 + 2B_x + 2C = x$ オニジ 2 Ax+2 Bx = 0 Bret B+2C=D B+2C=0 C = L g

Summary

- Consider $a_n y^{(n)} + \dots + a_1 y' + a_0 y = q(x)$
- We can compute the homogeneous solution by looking at roots of the characteristic polynomial $a_n\lambda^n + \cdots + a_1\lambda + a_0 = 0$, and independent solutions will be of the form $e^{\lambda x}$ or $e^{Re(\lambda)x} \cos(Im(\lambda)x)$ and $e^{Re(\lambda)x} \sin(Im(\lambda)x)$.
- We can often guess a particular solution by using an Ansatz with undetermined coefficients that looks like the derivatives of q(x).
 We can then solve for the coefficients.
- The general solution is then given by the homogeneous solution plus any particular solution.
- We can solve an initial value problem by plugging those values back into the general solution.