Nonhomogeneous constant coefficient ODEs Lecture 9d: 2021-07-21

MAT A35 – Summer 2021 – UTSC Prof. Yun William Yu

(In)homogeneous constant coefficient linear ODEs

- Consider $a_n y^{(n)} + \cdots + a_1 y' + a_0 y = q(x)$, where a_i are constant coefficients and q(x) is a functions of x.
 - If q(x) = 0, then homogeneous.
 - Otherwise, it is inhomogeneous.

Solution to inhomogeneous problems

Consider the inhomogeneous equation

$$a_n y^{(n)} + \dots + a_1 y' + a_0 y = q(x)$$

 The associated homogeneous equation (which we know how to solve) is:

$$a_n y^{(n)} + \dots + a_1 y' + a_0 y = 0$$

• If y_p is a any "particular" solution to the inhomogeneous equation, and y_h is the general solution to the associated homogeneous equation, then $y = y_p + y_g$ is the general solution to the inhomogeneous equation.

Example

$$\bullet y'' + 3y' + 2y = 6$$

Example

•
$$y'' + 3y' + 2y = e^{-3x}$$

Method of undetermined coefficients

- Consider $a_n y^{(n)} + \dots + a_1 y' + a_0 y = q(x)$
- Notice that whatever we guess for the particular solution y_p we have to take derivatives of it. A reasonable "Ansatz", guess, is y_p will "look like" the derivatives of q(x) but with different coefficients.

Try it out: guess an Ansatz

$$q(x) = e^x + e^{2x}$$

•
$$q(x) = 3x^2 + \sin x$$

•
$$q(x) = \frac{1}{x}$$

A:
$$Ae^x$$

B:
$$Ae^{2x}$$

$$C: Ae^x + Be^{2x}$$

$$D: Ae^x + Be^{2x} + C$$

A:
$$Ax^2 + B \sin x$$

$$B: Ax^2 + B\sin x + C\cos x$$

C:
$$Ax^2 + Bx + C + D \sin x$$

$$D:Ax^2 + Bx + C + D\sin x + E\cos x$$

A:
$$A \ln x + B$$

B:
$$\frac{A}{x} + B$$

C:
$$\frac{A}{x} + \frac{B}{x^2} + D$$

B:
$$\frac{A}{x} + B$$

C: $\frac{A}{x} + \frac{B}{x^2} + D$
D: $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + D$

E: None of the above

Ansatz-homogeneous solution collisions

- What if your Ansatz looks like one of the homogeneous solutions?
- Then just like with repeated roots, will need to add an "x".

Try it out: guess an Ansatz y_p

•
$$y'' + 3y' + 2y = e^x + e^{2x}$$

$$\bullet y'' - y = e^x + e^{2x}$$

•
$$y'' + y = \sin x$$

A:
$$Ae^x + Be^{2x}$$

$$B: Axe^x + Be^{2x}$$

C:
$$Ae^x + Bxe^{2x}$$

D:
$$Axe^x + Bxe^{2x}$$

E: None of the above

A:
$$Ae^x + Be^{2x}$$

B:
$$Axe^x + Be^{2x}$$

C:
$$Ae^x + Bxe^{2x}$$

D:
$$Axe^x + Bxe^{2x}$$

E: None of the above

A:
$$A \sin x$$

B:
$$A \sin x + B \cos x$$

C:
$$Ax \sin x + B \cos x$$

D:
$$Ax \sin x + Bx \cos x$$

E: None of the above

Example

•
$$y' + 2y = x^2$$
, $y(0) = 1$

Summary

- Consider $a_n y^{(n)} + \dots + a_1 y' + a_0 y = q(x)$
- We can compute the homogeneous solution by looking at roots of the characteristic polynomial $a_n\lambda^n+\cdots+a_1\lambda+a_0=0$, and independent solutions will be of the form $e^{\lambda x}$ or $e^{Re(\lambda)x}\cos(Im(\lambda)x)$ and $e^{Re(\lambda)x}\sin(Im(\lambda)x)$.
- We can often guess a particular solution by using an Ansatz with undetermined coefficients that looks like the derivatives of q(x). We can then solve for the coefficients.
- The general solution is then given by the homogeneous solution plus any particular solution.
- We can solve an initial value problem by plugging those values back into the general solution.