Quiz 3 - Practice Problems

Problem 1: Multivariable functions

Consider the function

$$f(x,y)=(x^4-4x^2)e^{-0.1y^2}$$

Graph this function at several different zoom levels and describe the behavior of the function in words.

Do you see any local extrema?

Problem 2: Partial derivatives

Compute all of the 1st and 2nd-order partial derivatives of the function f(x, y) from above.

Problem 3: Maximums and minimums

- 1. Find all critical points of f(x, y) using the partial derivatives from Problem 2.
- 2. Use the various derivative tests we learned to classify each critical point as either a minimum or maximum if possible. If it is not possible, explain why. Note that one critical point will be unclassifiable using the deriviative tests.
- 3. In lecture, we defined a local maximum of $f : \mathbb{R}^2 \to \mathbb{R}$ as a point (x_0, y_0) where there exist a small neighborhood N around (x_0, y_0) where $f(x, y) < f(x_0, y_0)$ for any $(x, y) \in N$. This definition is usually actually referred to as the definition of a **strict** local maximum. Often, we relax the definition to replace the "<" with a " \leq "; i.e. a "non-strict" local maximum is a point where $f(x, y) \leq f(x_0, y_0)$ for any $(x, y) \in N$. Use these two descriptions to characterize the behavior of the unclassifiable critical point from 3.2 above. Is it a strict local maximum? Is it a non-strict local maximum? Justify your claims.

Aside: The usual definition (such as found in your textbook) of local minimums and maximums actually is the non-strict one. The use of "<" and ">" in the notes instead of " \leq " and " \geq " is nonstandard.

Problem 4: Multivariable integration

Find the volume of a solid capped by the surface $g(x,y) = \sqrt{xy} + 1$ bounded by the following inequalities:

- $x \leq 2$
- $y \ge 0$
- $y \leq x^2$
- $y \ge x$

Give your answer to 3 decimal places. Show all of your work, but you may use a calculator for the final computation.

Problem 5: Linear Regression Analysis

The table below shows the average salary of an NFL player player in millions over a 10-year period:

Year	Salary in millions
1992	0.48
1993	0.67
1994	0.63
1995	0.72
1996	0.79
1997	0.74
1998	0.99
1999	1.06
2000	1.12
2001	1.10

- 1. Use linear regression to find the best fit line.
- 2. What does your model predict to be the average salary in 2000? Is the prediction good?
- 3. Predict the average salary in 2017. Is the prediction good?
- 4. The actual average salary in 2017 was 2.7 million. If your prediction was significantly off, explain in words why that might have happened.

Problem 6: Nonlinear regression

Attempt to build a better model by using nonlinear regression.

- 1. What are the predicted average salaries in 2000 vs. 2017 using quadratic regression? Do these predictions make sense?
- 2. What are the predicted average salaries in 2000 vs. 2017 using cubic regression? Do these predictions make sense?
- 3. Importantly, note that although the cubic model is better fit to the data in the table (e.g. 2000), it seems to give a worse prediction for 2017. What happened?