Quiz 5 - Practice Problems - Solutions

Problem 1: Higher-order inhomogeneous equation

Consider the following ODE:

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}+2 y^{\prime}+y=1-e^{x}
$$

1. Find the real homogeneous solution.
2. Find a real particular solution.
3. Find the real general solution.

$$
\begin{aligned}
& \lambda^{4}+2 \lambda^{3}+2 \lambda^{2}+2 \lambda+1=0 \\
& (\lambda+1)^{2}\left(\lambda^{2}+1\right)=0 \\
& \lambda=\left\{\begin{array}{l}
-1, \text { multiplicity } 2 \\
\pm i
\end{array}\right.
\end{aligned}
$$

Thus, the homogeneous solution is

$$
y_{h}=c_{1} e^{-x}+c_{2} x e^{-x}+c_{3} \sin x+c_{4} \cos x
$$

Ansatz for particular solution
$y_{p}=A+B e^{x}$.
$y_{p}^{\prime}=B e^{x}$
$y_{p}^{\prime \prime}=B e^{x}$
$y_{p}^{\prime \prime \prime}=B e^{x}$
$y_{p}^{\prime \prime \prime \prime}=B e^{x}$
Thus,
$y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}+2 y^{\prime}+y=A+8 B e^{x}=1-e^{x}$
So, $A=1$ and $B=-\frac{1}{8}$
$y_{p}=1-\frac{1}{8} e^{x}$

The general solution is
$y=c_{1} e^{-x}+c_{2} x e^{-x}+c_{3} \sin x+c_{4} \cos x+1-\frac{1}{8} e^{x}$

Problem 2: System of equations

Solve the following initial value problem:

$$
\begin{aligned}
& \dot{x}=2 x-y+t \\
& \dot{y}=-x+2 y
\end{aligned}
$$

where $x(0)=\frac{13}{9}$ and $y(0)=-\frac{4}{9}$

Taking the derivative of the top equation,
$\ddot{x}=2 \dot{x}-\dot{y}+1$
$\ddot{x}=2 \dot{x}-(-x+2 y)+1=\dot{x}+x-2 y+1$
Note that from the top equation $y=2 x-\dot{x}+t$
$\ddot{x}=2 \dot{x}+x-2(2 x-\dot{x}+t)+1$
$\ddot{x}=4 \dot{x}-3 x-2 t+1$
$\ddot{x}-4 \dot{x}+3 x=-2 t+1$
Characteristic equation $\lambda^{2}-4 \lambda+3=(\lambda-1)(\lambda-3)=0$, so $\lambda=1,3$.
Homogeneous solution: $x_{h}=c_{1} e^{t}+c_{2} e^{3 t}$.
The particular solution Ansatz is:
$x_{p}=A t+B$
$\dot{x}_{p}=A$
$\ddot{x}_{p}=0$
So $-4 A+3(A t+B)=-2 t+1$
$3 A t+(3 B-4 A)=-2 t+1$
Thus, $3 A=-2$ and $3 B-4 A=1$
So $A=-\frac{2}{3}, B=-\frac{5}{9}$
Thus, $x_{p}=-\frac{2}{3} t-\frac{5}{9}$.
The general solution $x=x_{h}+x_{p}$, so

$$
\begin{aligned}
& x=c_{1} e^{t}+c_{2} e^{3 t}-\frac{2}{3} t-\frac{5}{9} \\
& \dot{x}=c_{1} e^{t}+3 c_{2} e^{3 t}-\frac{2}{3} \\
& y=2 x-\dot{x}+t \text { from above, so } \\
& y=2 c_{1} e^{t}+2 c_{2} e^{3 t}-\frac{4}{3} t-\frac{10}{9}-c_{1} e^{t}-3 c_{2} e^{3 t}+\frac{2}{3}+t \\
& y=c_{1} e^{t}-c_{2} e^{3 t}-\frac{1}{3} t-\frac{4}{9}
\end{aligned}
$$

If we plug in the initial values $x(0)=\frac{13}{9}$ and $y(0)=-\frac{4}{9}$, we find that $c_{1}=1$ and $c_{2}=1$.
Thus, the final solution to the initial value problem is:
$x=e^{t}+e^{3 t}-\frac{2}{3} t-\frac{5}{9}$
$y=e^{t}-e^{3 t}-\frac{1}{3} t-\frac{4}{9}$

Problem 3: Matrix equations

1. Given unknown functions $x(t)$ and $y(t)$, find the general solution to the system:
$\left[\begin{array}{l}x \\ y\end{array}\right]=c_{1} e^{-5 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]+c_{2} e^{5 t}\left[\begin{array}{l}2 \\ 1\end{array}\right]$
2. Let $\dot{z}=A z$ for each of the following 2×2 matrices A. Classify the equilibrium at the origin by type and stability.

- $\left[\begin{array}{cc}3 & 4 \\ 4 & -3\end{array}\right]$
- $\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$
- $\left[\begin{array}{cc}-3 & 1 \\ 0 & -1\end{array}\right]$
- $\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]$
saddle point, unstable.
center, stable.
node, asymptotically stable.
spiral, unstable

Problem 4: Word problem

Chemicals enter a house's basement air at a rate of 0.1 mg per minute. Let $F(t)$ and $B(t)$ denote the total amount of chemical present in the first-story air and the basement air after t minutes respectively.

Both the first floor and the basement have volumes of $200 \mathrm{~m}^{3}$ each. Air flows from the basement into the first floor at a rate of $2 \mathrm{~m}^{3}$ per minute, while air flows from the first floor to the outside at the rate of $4 \mathrm{~m}^{3}$ per minute. Air from the outside (with no chemicals present) replenishes the air in both rooms to keep the volumes constant.

1. Draw a 2-compartment model for B and F.
2. Write a system of two first-order differential equations modelling the system.
3. Find the equilibrium values for B and F. (Recall: if a system is at its equilibrium values, then there is no change over time in any of its variables.)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{B}=-0.01 B+0.1 \\
\dot{F}=0.01 B-0.02 F
\end{array}\right. \\
& \text { Equilibria } \quad 0=\dot{B}=-0.01 B+0.1 \\
& 0=\dot{F}=0.01 B-0.02 F \\
& \Rightarrow \quad 0.01 B=0.1 \\
& \Rightarrow B=10 \mathrm{mg} \\
& \Rightarrow 0=B-2 F \\
& \Rightarrow F=5 \mathrm{mg}
\end{aligned}
$$

