tags: MATA35-2021

Quiz 5 - Practice Problems - Solutions

Problem 1: Higher-order inhomogeneous equation

Consider the following ODE:

$$y'''' + 2y''' + 2y'' + 2y' + y = 1 - e^x$$

- 1. Find the real homogeneous solution.
- 2. Find a real particular solution.
- 3. Find the real general solution.

$$egin{aligned} &\lambda^4+2\lambda^3+2\lambda^2+2\lambda+1=0\ &(\lambda+1)^2(\lambda^2+1)=0\ &\lambda=igg\{ egin{aligned} -1, ext{ multiplicity }2\ \pm i \end{aligned}$$
 Thus, the homogeneous solution is $y_h=c_1e^{-x}+c_2xe^{-x}+c_3\sin x+c_4\cos x \end{aligned}$

Ansatz for particular solution $y_p = A + Be^x$. $y'_p = Be^x$ $y''_p = Be^x$ $y'''_p = Be^x$ $y'''_p = Be^x$ Thus, $y'''' + 2y''' + 2y' + y = A + 8Be^x = 1 - e^x$ So, A = 1 and $B = -\frac{1}{8}$ $y_p = 1 - \frac{1}{8}e^x$

The general solution is $y=c_1e^{-x}+c_2xe^{-x}+c_3\sin x+c_4\cos x+1-rac{1}{8}e^x$

Problem 2: System of equations

Solve the following initial value problem:

$$\dot{x}=2x-y+x$$
 $\dot{y}=-x+2y$

where $x(0)=rac{13}{9}$ and $y(0)=-rac{4}{9}$

Taking the derivative of the top equation, $\ddot{x} = 2\dot{x} - \dot{y} + 1$ $\ddot{x} = 2\dot{x} - (-x + 2y) + 1 = \dot{x} + x - 2y + 1$ Note that from the top equation $y = 2x - \dot{x} + t$ $\ddot{x} = 2\dot{x} + x - 2(2x - \dot{x} + t) + 1$ $\ddot{x} = 4\dot{x} - 3x - 2t + 1$ $\ddot{x} - 4\dot{x} + 3x = -2t + 1$ Characteristic equation $\lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3) = 0$, so $\lambda = 1, 3$. Homogeneous solution: $x_h = c_1 e^t + c_2 e^{3t}$. The particular solution Ansatz is: $x_p = At + B$ $\dot{x}_n = A$ $\ddot{x}_n = 0$ So -4A + 3(At + B) = -2t + 13At + (3B - 4A) = -2t + 1Thus, 3A = -2 and 3B - 4A = 1So $A = -\frac{2}{3}$, $B = -\frac{5}{9}$ Thus, $x_p = -\frac{2}{3}t - \frac{5}{9}$. The general solution $x = x_h + x_{p'}$ so $x = c_1 e^t + c_2 e^{3t} - rac{2}{3}t - rac{5}{9}$ $\dot{x} = c_1 e^t + 3 c_2 e^{3t} - rac{2}{2}$ $y = 2x - \dot{x} + t$ from above, so $y = 2c_1e^t + 2c_2e^{3t} - rac{4}{3}t - rac{10}{9} - c_1e^t - 3c_2e^{3t} + rac{2}{3} + t$ $y = c_1 e^t - c_2 e^{3t} - \frac{1}{2}t - \frac{4}{2}$

If we plug in the initial values $x(0) = \frac{13}{9}$ and $y(0) = -\frac{4}{9}$, we find that $c_1 = 1$ and $c_2 = 1$. Thus, the final solution to the initial value problem is: $x = e^t + e^{3t} - \frac{2}{3}t - \frac{5}{9}$ $y = e^t - e^{3t} - \frac{1}{3}t - \frac{4}{9}$

Problem 3: Matrix equations

1. Given unknown functions x(t) and y(t), find the general solution to the system:

Quiz 5 - Practice Problems - Solutions - HackMD

$$egin{bmatrix} \dot{x} \ \dot{y} \end{bmatrix} = egin{bmatrix} 3 & 4 \ 4 & -3 \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix}$$

$\begin{bmatrix} x \end{bmatrix}$	a a -5t	$\begin{bmatrix} 1 \end{bmatrix}$	1 - 2 - 5t	$\lceil 2 \rceil$
$\lfloor y \rfloor$	$= c_1 e^{-\omega}$	$\lfloor -2 \rfloor$	$ +c_2e^{\imath\iota} $	$\lfloor 1 \rfloor$

2. Let $\dot{z} = Az$ for each of the following 2x2 matrices A. Classify the equilibrium at the origin by type and stability.

-		
0	$\begin{bmatrix} 3\\ 4 \end{bmatrix}$	$\begin{bmatrix} 4 \\ -3 \end{bmatrix}$
0	$\left[egin{array}{c} 0 \ -2 \end{array} ight]$	$\begin{bmatrix} 2\\ 0 \end{bmatrix}$
0	$\left[egin{array}{c} -3 \\ 0 \end{array} ight]$	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$
0	$\left[egin{array}{c} 1 \ -2 \end{array} ight.$	$\begin{bmatrix} 2\\1 \end{bmatrix}$

saddle point, unstable. center, stable. node, asymptotically stable. spiral, unstable

Problem 4: Word problem

Chemicals enter a house's basement air at a rate of 0.1 mg per minute. Let F(t) and B(t) denote the total amount of chemical present in the first-story air and the basement air after t minutes respectively.

Both the first floor and the basement have volumes of 200 m^3 each. Air flows from the basement into the first floor at a rate of 2 m^3 per minute, while air flows from the first floor to the outside at the rate of 4 m^3 per minute. Air from the outside (with no chemicals present) replenishes the air in both rooms to keep the volumes constant.

- 1. Draw a 2-compartment model for B and F.
- 2. Write a system of two first-order differential equations modelling the system.
- 3. Find the equilibrium values for B and F. (Recall: if a system is at its equilibrium values, then there is no change over time in any of its variables.)

$$\begin{array}{c} 0.1 \\ B \\ \hline 0.01B \\ \hline F \\ \hline 0.02F \\ \hline 0.02F \\ \hline 0.01B \\ \hline 0$$