Quiz 5-Wednesday

Problem 1: Higher-order inhomogeneous equation [25pts]

Consider the following ODE:

$$
y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=x+1
$$

1. [10pts] Find the real homogeneous solution.
2. [10pts] Find a real particular solution.
3. [5pts] Find the real general solution.

Problem 2: System of equations [25pts]

Solve the following initial value problem:

$$
\begin{aligned}
& \dot{x}=x+2 y \\
& \dot{y}=2 x+4 y
\end{aligned}
$$

where $x(0)=5$ and $y(0)=0$.
Hint: You learned two different methods for solving this problem, and you may use whichever one is easier.

Problem 3: Matrix equations [24pts +3 pts bonus]

Let $\dot{z}=A z$ for each of the following 2×2 matrices A. Classify the equilibrium at the origin by type and stability. Bonus: if the type is a node, further specify if it is proper, improper, or neither.

1. $\left[\begin{array}{cc}1 & -4 \\ 1 & 1\end{array}\right]$
2. $\left[\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right]$
3. $\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right]$
4. $\left[\begin{array}{cc}0 & 4 \\ -1 & 0\end{array}\right]$

Problem 4: Word problem [26pts]

Tank A contains 100 gallons of pure water. Tank B contains 200 gallons of water with 50 lb of salt dissolved. Water is pumped from tank A to tank B at a rate of 10 gallons per minute. Water is pumped from tank B to tank A at a rate of 5 gallons per minute. Water is additionally drained from tank B to the outside at a rate of 5 gallons per minute. Pure water is added to tank A to keep the total volume constant.

Let $A(t)$ and $B(t)$ denote the total amount of salt present in tanks A and B respectively.

1. [10pts] Draw a 2-compartment model for A and B.
2. [10pts] Write a system of two first-order differential equations modelling the system.
3. [6pts] Find the equilibrium values for A and B.
