Systems of Linear ODEs Lecture 10a: 2023-03-20

MAT A35 – Winter 2023 – UTSC Prof. Yun William Yu

System of two first-order ODEs

- Let t be the independent time variable, and let x and y be two dependent variables.
- If *a*, *b*, *c*, *d* are constants, then $\begin{cases}
 \frac{dx}{dt} = ax + by \\
 \frac{dy}{dt} = cx + dy
 \end{cases}$

is a homogeneous system of two first-order linear ODEs.

• Similarly,
$$\begin{cases} \frac{dx}{dt} = ax + by + f(t) \\ \frac{dy}{dt} = cx + dy + g(t) \end{cases}$$

is an inhomogeneous system of two firstorder linear ODEs.

Reduction method

- We can solve a system of two first-order linear ODEs by converting it into a single second-order linear ODE.
 - First compute \ddot{x} as a function of x, y, \dot{y} from the first equation.
 - Then eliminate y by substituting in the second equation.
 - Then, eliminate y by substituting in the first equation.

Solve 2nd-order ODE

- Find eigenvalues/roots of the characteristic equation.
- Solve for *x*.
- Solve for y.

Initial values

• If there are initial values, plug them in.

Try it out

•
$$\begin{cases} \dot{x} = y \\ \dot{y} = -x + 2y' \end{cases} x(0) = 1, y(0) = 3$$

• Step 1: Find \ddot{x} .

• Step 2: Get rid of \dot{y} .

A:
$$\ddot{x} = 0$$

B: $\ddot{x} = 1$
C: $\ddot{x} = y$
D: $\ddot{x} = \dot{y}$
E: None of the above

A:
$$\ddot{x} = y$$

B: $\ddot{x} = -x + 2y$
C: $\ddot{x} = -xy + 2y^2$
D: $\ddot{x} = \dot{y}$
E: None of the above

• Step 3: Get rid of y and rewrite.

A:
$$\ddot{x} + 2\dot{x} + x = 0$$

B: $\ddot{x} - 2\dot{x} + x = 0$
C: $\ddot{x} + 2\dot{x} - x = 0$
D: $\ddot{x} - 2\dot{x} - x = 0$
E: None of the above

Try it out (continued)

• Step 4: Solve the ODE

A:
$$x = c_1 e^t + c_2 e^{-t}$$

B: $x = c_1 e^t + c_2 e^{2t}$
C: $x = c_1 e^t + c_2 x e^t$
D: $x = c_1 e^t + c_2 t e^t$
E: None of the above

• Step 5: Plug back in to solve for y.

A:
$$y = c_1 e^t + c_2 t e^t$$

B: $y = (c_1 + c_2) e^t + c_2 t e^t$
C: $y = c_1 e^t + (c_1 + c_2) t e^t$
D: $y = (c_1 + c_2) e^t + (c_2 - c_2) t e^t$
E: None of the above

Try it out (continued)

• Plug in initial values x(0) = 1, y(0) = 3

A:
$$c_1 = 1, c_2 = 1$$

B: $c_1 = 1, c_2 = 2$
C: $c_1 = 2, c_2 = 1$
D: $c_1 = 2, c_2 = 2$
E: None of the above

Inhomogeneous example

•
$$\begin{cases} \dot{x} = x + y + 9t \\ \dot{y} = 4x + y + 3 \end{cases}$$

Example (continued)

• $\ddot{x} - 2\dot{x} - 3x = -9t + 12$

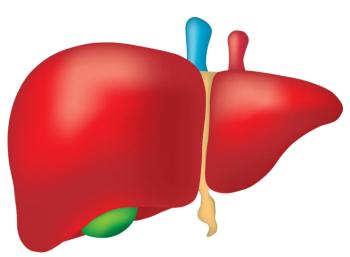
Solve for *y*

$$\begin{cases} \dot{x} = x + y + 9t \\ \dot{y} = 4x + y + 3 \end{cases}$$

• $x = c_1 e^{-t} + c_2 e^{3t} + 3t - 6$

Application (Bittinger, 9.3, Ex. 5)

 3mg of glactosyl human serum albumin (Tc-GSA) is injected into a patient's bloodstream to measure liver function. After injection, Tc-GSA is transferred from the blood to the liver at 6% per minute, and from the liver into blood at 3% per minute.



 How much Tc-GSA is in the blood or liver as a function of time?

Application (continued)

$$\begin{cases} \dot{B} = -0.06B + 0.03L \\ \dot{L} = 0.06B - 0.03L \end{cases}$$

Application (continued)

• $\ddot{B} + 0.09\dot{B} = 0$ $L = \frac{100}{3}\dot{B} + 2B$

Initial Value Problem

• $\begin{cases} B(t) = c_1 + c_2 e^{-0.09t} \\ L(t) = 2c_1 - c_2 e^{-0.09t}, \text{ with initial values} \begin{cases} B(0) = 3 \\ L(0) = 0 \end{cases}$