Phase portraits Lecture 10c: 2023-03-23

MAT A35 - Winter 2023 - UTSC Prof. Yun William Yu

System of two $1^{\text {st -order ODEs × }}$

$\cdot\left\{\begin{array}{l}\dot{x}=x+y-\sin t \\ \dot{y}=x^{2}+y^{2}-\ln t\end{array}\right.$ (nonautonomous)

- How many dimensions do nonautonomous systems need to draw direction fields?
- $\left\{\begin{array}{c}\dot{x}=x+y \\ \dot{y}=x^{2}+y^{2}\end{array}\right.$ (autonomous system)
- How many dimensions do autonomous systems need to (u) for x, y, t draw direction fields?
- How many dimensions do autonomous systems need to draw phase "lines"?

Plotting vector fields and trajectories

- Consider $\left\{\begin{array}{l}\dot{x}=f(x, y) \\ \dot{y}=g(x, y)\end{array}\right\}$
- The system associates a direction and a magnitude for every point in \mathbb{R}^{2}, telling you what direction trajectories go.
- WolframAlpha: "vector field $\{\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{g}(\mathrm{x}, \mathrm{y})\}$ "
- Ex: "vector field $\{y,-x\}$ " or "integral curves $\{y,-x\}^{\prime \prime}$
- Specify limits by adding " $x=-3 . .3, y=-3 . .3$ " after

vector fire
 trajechries

$$
\text { E } \quad \begin{aligned}
& \dot{x}=y \\
& \dot{y}=-x
\end{aligned}
$$

x, y	\dot{x}	\dot{y}
$(0,1)$	1	0
$(1,1)$	1	-1
$(1,0)$	0	-1
$(-1,0)$	0	1

Try it out

- Which of the following is the integral curves for the system, plotted for x and y both between -5 and 5 ?

$$
\begin{aligned}
& \dot{x}=4 x-y-\left(x+\frac{3}{2} y\right)\left(x^{2}+y^{2}\right) \\
& \dot{y}=x+4 y+\left(\frac{3}{2} x-y\right)\left(x^{2}+y^{2}\right)
\end{aligned}
$$

https://www.wolframalpha.com/input/? $i=$ integral+curves+\%7B4*x-y-\%28x\%2B1.5y\%29*\%28x\%5E2\%2By\%5E2\%29\%2C+x\%2B4*y\%2B\%281.5x-y\%29*\%28x\%5E2\%2By\%5E2\%29\%7D\%2C+x\%3D-5..5\%2C+y\%3D-5..5

Phase plane analysis

- Consider the autonomous homogeneous 2D linear system with constant coefficients

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right], A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { ea. } \quad A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

- Also, notice that the origin is always an equilibrium for a linear system.

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=c_{1} e^{-2 t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

frajechuris

Using the eigendecomposition

- If $\left(\lambda_{1}, v_{1}\right)$ and $\left(\lambda_{2}, v_{2}\right)$ is an eigendecomposition of A, then the general solution describing any trajectory is

$$
c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}
$$

- We can qualitatively analyze the behavior of the system by
 looking at the eigenvalues and eigenvectors.
- Consider $f(t)=c e^{\lambda t}$.
- If $\lambda>0$, we get exponential growth away from 0 .
- If $\lambda<0$, we get exponential decay towards 0 .

Sign and stability

- If eigenvalues are positive (or have a positive real part), then trajectories go away from the origin. (unstable node)
- If eigenvalues are negative (or have a negative real part), then trajectories go towards the origin. (asymptotically stable node)
- If eigenvalues have opposite signs, then we have a saddle point, as trajectories come in along one eigenvector, and leave along the other. (unstable, saddle point)

$$
\text { 要 } \quad \lambda=2,5
$$

$$
\text { At } t=\infty, \begin{aligned}
& \text { both ferns } \\
& \text { get bigger }
\end{aligned}
$$

$$
\text { [20 } \quad \lambda=-2,-5
$$

E., $\lambda=-2,5$ $z=c_{1} e^{-2 t} v_{1}^{\prime}+c_{2} e^{5 t} v_{2}$
$\left[\begin{array}{c}\prime \prime \\ 1 \\ 1\end{array}\right]$
saddle pt. unstable

Complex eigenvalues

- Recall complex eigenvalues come in pairs $\lambda_{1,2}=a \pm b i$.
- Solutions look like

$$
\underbrace{\sin l^{\text {citify }}}_{z=c_{1} v_{1} e^{a t} \frac{\sqrt{\cos b t}+c_{2} v_{2} e^{a t}}{\sin b t}}
$$

- The sign of the real part a determines if the trajectories go inward (stable) or outward (unstable).
- The imaginary term means that the trajectories have a rotational component; i.e. might spiral in or out, or form a circle.

(Im)proper nodes

$$
A=\left[\begin{array}{cc}
-1 & 2 \\
0 & -1
\end{array}\right]
$$

- Sometimes, if $\lambda_{1}=\lambda_{2}$, there is only one eigenvector. Then we have an improper node that's hard to draw.
- Sign still determines stable vs unstable.
- If $\lambda_{1}=\lambda_{2}$ and we have two eigenvectors, then we have a proper node, which looks like a star.

Note: $\Lambda=\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]$ for proper nodes

Summarizing everything

- $\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right], A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
- The origin $(0,0)$ is always an equilibrium point.
- We can understand the behavior around the origin by looking at the eigenvalues of A.
- Positive real parts mean that the trajectories go outward.
- Negative real parts mean that the trajectories go inward.
- Opposite sign eigenvalues mean you have a saddle point.
- Nonzero imaginary components mean that trajectories spiral.

Try it out

- $\lambda_{1}=\underline{4}, \lambda_{2}=-2$ unstable saddle it
- $\lambda_{1}=-3, \lambda_{2}=-1$ asymp. stable node
- $\lambda_{1}=2, \lambda_{2}=3$ unstable
node
- $\lambda_{1}=3, \lambda_{2}=3$ unstable node
- $\lambda_{1}=3+2 i, \lambda_{2}=3-2 i$ unstable
- $\lambda_{1,2}=-1 \pm 2 i$ asyut stable
- $\lambda_{1,2}=0 \pm 4 i$ stable center

Special note: weird stuff can happen when $\lambda=0$, which we won't deal with.

$$
\begin{gathered}
\lambda=\underset{q}{0},-1 \\
0+0 i
\end{gathered}
$$

A: Node (incl. (im)proper)
B: Saddle Point
C: Spiral
D: Center
E : None of the above

Example

- Classify the behavior around the origin of

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Rig:

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-1 & -3 \\
-3 & d-1
\end{array}\right|= & (\lambda-1)^{2}-9=0 \\
& \lambda^{2}-2 x-8=0 \\
& (\lambda-4)(\lambda+2)=0 \\
& \lambda=4,-2
\end{aligned}
$$

Unstable Saddle pot.

Example

- Classify the behavior around the origin of

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Erg. $\left|\begin{array}{cc}\lambda-1 & -3 \\ 0 & \lambda-1\end{array}\right|=\begin{aligned} & (\lambda-1)^{2}=0 \\ & \lambda=1, \text { multiplicity } 2 .\end{aligned}$

$$
\begin{array}{r}
\begin{array}{c}
\text { (improiel } \\
\text { U. }+6, b 6 \\
\text { Node }
\end{array}>\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\Rightarrow x+3 y=x \\
\Rightarrow y=0 \\
\Rightarrow v_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{array}
$$

Try it out

- Classify the behavior around the origin of $\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{cc}1 & 3 \\ -3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
ET. $\begin{aligned}\left.0=\left|\begin{array}{cc}\lambda-1 & 3 \\ -3 & \lambda-1\end{array}\right|=\begin{array}{rl}(\lambda-1)^{2}+9 & =0 \\ & (\lambda-1)^{2}=-9 \\ & \lambda-1= \pm 3 i \\ & \lambda=1 \pm 3 i\end{array}\right)\end{aligned}$
urgtalle spinal

A: Asymptotically Stable
B: Stable
C: Unstable
D: ???
E: None of the above

A: Node (incl. (im)proper)
B: Saddle Point
C: Spiral
D: Center
E: None of the above

