Nonlinear phase portraits Lecture 11a: 2023-03-27

MAT A35 – Winter 2023 – UTSC Prof. Yun William Yu

Summarizing linear phase portraits

$$\bullet \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}, A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

- The origin (0,0) is always an equilibrium point.
- We can understand the behavior around the origin by looking at the eigenvalues of *A*.
- Positive real parts mean that the trajectories go outward.
- Negative real parts mean that the trajectories go inward.
- Opposite sign eigenvalues mean you have a saddle point.
- Nonzero imaginary components mean that trajectories spiral.

Nonlinear autonomous systems and Jacobians

- $\bullet \begin{cases} \dot{x} = f(x, y) \\ \dot{y} = g(x, y) \end{cases}$
- Equilibrium points when $\begin{cases} \dot{x} = 0 \\ \dot{y} = 0 \end{cases}$
- We can approximate a function around a point using its derivative at that point.
- The Jacobian of the system is the analogue of the derivative:

$$J(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}$$

$$J(0,1): \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$

Nonlinear equilibria behavior

Areay

 Around each equilibrium, we can approximate its behavior by looking at the Jacobian matrix'

behavior by looking at the Jacobian matrix' eigenvalues.

A:
$$|X - A| = 0$$
 $|X - A| = 0$
 $|X$

Local phase portraits

$$(0, -1)$$
 $\lambda_1 = 2$
 $v_2 = [-1]$
 $\lambda_1 = -2$
 $v_2 = [-1]$

Phase portraits

 Find the equilibrium points for the nonlinear system:

$$0 = \dot{x} = xy$$

$$0 = \dot{y} = x + 2y - 8$$

$$x \neq 2y - 8$$

Case 2.
$$Y^{20}$$
 $x-8=0=7$ $x=8$

 Find the Jacobian matrix for the nonlinear system:

$$\dot{x} = xy$$

$$\dot{y} = x + 2y - 8$$

$$J(x,y) = \begin{bmatrix} \frac{\partial}{\partial x} \left[xy\right] & \frac{\partial}{\partial y} \left[xy\right] \\ \frac{\partial}{\partial x} \left[x+2y-8\right] & \frac{\partial}{\partial y} \left[x+2y-8\right] \end{bmatrix}$$

$$= \left[\begin{array}{ccc} y & \times \\ 1 & 2 \end{array}\right]$$

A:
$$\begin{bmatrix} x & y \\ x & 2y \end{bmatrix}$$

B: $\begin{bmatrix} x & y \\ 1 & 2 \end{bmatrix}$

B:
$$\begin{bmatrix} x & y \\ 1 & 2 \end{bmatrix}$$

$$C: \begin{bmatrix} \overline{x} & \overline{y} \\ 2y & x \end{bmatrix}$$

D:
$$\begin{bmatrix} y & x \\ 1 & 2 \end{bmatrix}$$

E: None of the above

 Use the Jacobian to determine the behavior around the first equilibrium point: (0,4)

$$J(0,4)=\begin{bmatrix} 4 & 0 \\ 1 & 2 \end{bmatrix}$$

unstable nude

A: Asymptotically stable

B: Stable

C: Unstable

D: ???

E: None of the above

A: Node

B: Saddle point

C: Spiral

D: Center

E: None of the above

 Use the Jacobian to determine the behavior around the second (8,0) equilibrium point:

$$J(x,y) = \begin{bmatrix} y & x \\ 1 & 2 \end{bmatrix}$$

$$J(8,0) = \begin{bmatrix} 0 & 8 \\ 1 & 2 \end{bmatrix}$$

$$\begin{vmatrix} \lambda & -8 \\ -1 & \lambda^{-2} \end{vmatrix} = 0 \qquad \lambda^{2} - 2\lambda - 7 = 0$$

$$(\lambda 12)(\lambda - 4) = 0$$

λ = - 2, 4

$$\lambda_2 = 4$$
 $8y : 4x $v_2 : \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

A: Asymptotically stable

B: Stable

C: Unstable

D: 333

E: None of the above

A: Node

B: Saddle point

C: Spiral

D: Center

E: None of the above

Putting it together

Predator-prey Lotka-Volterra model

- Consider an environment with wolves and deer.
- Deer population: x(t)
- Wolf population: y(t)
- The deer grow exponentially, but the population is kept in check by predation from the deer:

$$\dot{x}(t) = 2x - xy$$

 The wolves die out, unless they can find enough deer to eat.

$$\dot{y}(t) = -y + 0.4xy$$

https://commons.wikimedia.org/wiki/File:Wolves_eating_deer.jpeg

interactions are had for deer

interactions good for wobs

Find equilibrium values and stability

$$\begin{cases}
\dot{x} = 2x - xy & \exists (x,y) = \begin{bmatrix} 2-y & -x \\ 0.4y & -1+0.4x \end{bmatrix} \\
\dot{y} = -y + 0.4xy & \exists (x,y) = \begin{bmatrix} 2-y & -x \\ 0.4y & -1+0.4x \end{bmatrix} \\
\dot{y} = -y + 0.4xy & \exists (x,y) = y \text{ or } y = 2 \\
0 = -y + 0.4xy = y \text{ of } y = 0
\end{cases}$$

$$\frac{C_{x,y}}{C_{x,y}} = \frac{1}{x + 0} & \Rightarrow y = 0 & (0,0)$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0 & (0,0)$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,y} = \frac{1}{x + 0} & \Rightarrow y = 0$$

$$C_{x,$$

$$J(2.5,2): \begin{bmatrix} 0 & -2.5 \\ 0.8 & 0 \end{bmatrix} =) \begin{cases} \lambda^{2} + 0.25 \cdot 0.8 = 0 \\ \lambda^{2} + 2 = 0 \end{cases}$$

$$\lambda = \pm i J 2$$

$$\lambda = \pm i J 2$$

Phase diagram

