Power series Lecture 11b: 2023-03-27

MAT A35 - Winter 2023 - UTSC Prof. Yun William Yu

Who is your favorite Taylor?

A: Taylor Swift

C: Brook Taylor

E: Taylor Momsen

Simple mathematical operations

- Which mathematical operation is the hardest?
- Adding, subtracting, or multiplying two real numbers

A: Addition
B: Subtraction
C: Multiplication
D: Division
E: All are equally hard gives a real number.

$$
\begin{array}{ll}
5+3=8 & 4 \cdot 0=0 \\
3-5=-2 & \pi \cdot e
\end{array}
$$

- Dividing two real numbers may not.

$$
4 / 5=0.8
$$

410 is not a number

Polynomials

- A real polynomial $p(x)$ in a variable x is an expression that combines together x with real numbers using just addition, subtraction, and multiplication, but no division.

$$
\begin{aligned}
& \text { poly: } p(x)=(x+1)(x-1)+5 x \cdot y-3.4 x+\pi \\
& \text { not poly: } f(x)=\frac{1}{x-1} \quad f(x)=e^{x} \quad f(x)=(\operatorname{la} x) x^{2}
\end{aligned}
$$

- Canonical form for n th-order polynomials:

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{i} \in \mathbb{R}$ and n is a positive integer.
E.

$$
\begin{aligned}
p(x) & =x^{2}-1+5 x^{2}-3.4 x+\pi \\
& =6 x^{2}+(-3.4) x+(\pi-1)
\end{aligned}
$$

Polynomials are nice

- Polynomials are built up from the "easy" operations of addition and multiplication (and implicitly subtraction).
- If you add together two polynomials, you get another polynomial.

$$
p(x)=x^{2}+2 x+1 \quad q(x)=x^{3}-1 \quad p(x)+q(x)=x^{3}+x^{2}+2 x
$$

- If you multiply together two polynomials, you get another

$$
p(x)_{q}(x)=x^{5}+2 x^{4}+x^{3}-x^{2}-2 x-1
$$

- Polynomials are infinitely "smooth" meaning you can keep on taking derivatives at any point.

$$
\begin{array}{cc}
p^{\prime}(x)=2 x+2 & p^{\prime \prime \prime}(x)=0 \\
p^{\prime \prime}(x)=2 & p^{\prime \prime \prime \prime}(x)=0 \\
\vdots & f^{\prime}(x)=\left\{\begin{array}{c}
-1, x<0 \\
1, x>0 \\
\text { undefined, } x=
\end{array}\right.
\end{array}
$$

Recall: different types of regression

- Linear regression:

$$
f(x)=m x+b
$$

- Quadratic regression:

$$
f(x)=m_{2} x^{2}+m_{1} x+b
$$

- Cubic regression:
$f(x)=m_{3} x^{3}+m_{2} x^{2}+m_{1} x$
- Polynomial regression of degree
n:

$$
f(x)=b+\sum_{i=1}^{n} m_{i} x^{i}
$$

- Exponential regression:
\mathcal{Y} can add more parameters for bethe fit.

$$
f(x)=c_{1} e^{c_{2} x}
$$

- Power dependencies:

$$
f(x)=c_{1} x^{c_{2}}
$$

Recall: polynomial regression

- Given a collection of points, can approximate it with a polynomial function.

Be careful about too many parameters

- The more parameters you have (e.g. in a polynomial regression), the better your mean squared error will be.
- However, sometimes, you will overfit to the data.
- John vo Neumann: "with four parameters, I can fit an elephant, and with five I can make him wiggle his trunk".

Approximating non-polynomial

 functions- Sometimes, another "nice" function looks almost like a polynomial, at least locally.
感

Formal power series

- A polynomial

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

can also be written as

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i} \begin{array}{r}
\text { En as } p(x)=1+x+y^{2}+x^{3} \\
=\sum_{i=0}^{3} x^{i}
\end{array}
$$

- A formal power series is the infinite sum where $n \rightarrow$ ∞

$$
p(x)=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

EA. $p(x)=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots$.

$$
\infty
$$

Convergence

- A formal power series $p(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ converges at a value x if the infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$, where $x_{n}=\sum_{i=0}^{n} a_{i} x^{i}$ converges to a limit as $n \rightarrow \infty$. It is divergent otherwise.
Ex. $p(x)=\sum_{i=1}^{\infty} x_{i}=1+x+y^{2}+x^{3}+x^{4}+\ldots$

$$
p\left(\frac{1}{2}\right)=1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3} \cdots=2
$$

A: $p(0.5)=1$
B: $p(0.5)=2$
C: $p(0.5)=3$
$\mathrm{D}: p(0.5)$ is divergent

$$
p(1)=1+1+1+1+1+1+1+1+\cdots
$$

E : None of the above

If $|x|=1, \quad p(x)=\frac{1}{1-x}$
If $|x| \geqslant 1, p(x)$ is divergent

A: $p(1)=1$
B: $p(1)=2$
C: $p(1)=3$
$\mathrm{D}: p(1)$ is divergent
E : None of the above

Power series for a function

- A formal power series $p(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ can be thought of as a function whose domain is the interval of convergence.
Ex. $p(y)=1+x+x^{2}+x^{3}+x^{4}+\ldots$ is a function in the domain $(-1,1)$
- Sometimes, we can express another function as a power series, at least on some interval of convergence.
E. $x^{2}+2 x+1$ is a poly and already - power series $x^{2}+2+11=\sum_{i=0}^{\infty} a_{i} \cdot x^{i}$ where $a_{0}=1, a_{1}=2, a_{2}=1, a_{3}=0, a_{4}=0, \ldots$

Ep $\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots \quad$ or the interval $\quad(-1,1)$

Manipulating power series

- How do we come up with a power series for a function?
E., $\frac{1}{1-x}=1+x+x^{2}+\cdots$ for $|x|<1$
- Sometimes, we can manipulate it algebraically.

Check:

$$
\begin{aligned}
& 1=(1-x)+x(1-x)+x^{2}(1-x)+x^{3}(1-x)+\cdots \\
& 1=(1-x)+\left(x-x^{2}\right)+\left(x^{2}-x^{3}\right)+(x^{3}-\underbrace{4})+\cdots
\end{aligned}
$$

E.

$$
\begin{aligned}
& p(x)=\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots \\
& p\left(x^{3}\right)=\frac{1}{1-x^{3}}=1+x^{3}+x^{6}+x^{9}+x^{12}+\cdots
\end{aligned}
$$

Try it out

- $\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots=\underline{\sum_{i=0}^{\infty} x^{i}}$
- What is $\frac{1}{1-2 x} ?=1+(2 x)+(2 x)^{2}+(2 x)^{3}+(2 x)^{4}+\ldots$

$$
\begin{aligned}
& =1+2 x+4 e^{2}+8 x^{3}+16 x^{4}+\ldots \\
& =\sum_{i=0}^{\infty}(2 x)^{i}=\sum_{i=0}^{\infty} 2^{i} x^{i}
\end{aligned}
$$

$$
\text { A: } \sum_{i=0}^{\infty} 2 x^{i}
$$

$$
\text { B: } \sum_{i=0}^{\infty} 2^{i} x^{i}
$$

$$
\mathrm{C}: \sum_{i=0}^{\infty} \frac{z^{i} x^{i}}{i!}
$$

D: $\sum_{i=0}^{\infty} \frac{x^{2 i}}{i!}$
E: None of the
$\cdot e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}$

- What is $e^{x^{2}}$?

$$
\begin{aligned}
& \text { What is } e^{x^{2}} ? \\
& =1+x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\cdots=\sum_{i=0}^{\infty} \frac{\left(x^{2}\right)^{i}}{i!}=\sum_{i=0}^{\infty} \frac{x^{2 i}}{i!}
\end{aligned}
$$

Who is your favorite Taylor?

A: Taylor Swift

B: Taylor Lautner
 C: Brook Taylor

Taylor series intuition

- If the space shuttle is moving at $10 \mathrm{~m} / \mathrm{s}$ away from Earth, how far away from Earth is it after 1 minute?
- What if its speed is not constant?
- If the space shuttle is moving at $10 \mathrm{~m} / \mathrm{s}$, and it is constantly accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$, how far away is it after 1 minute?

$$
\begin{array}{cll}
\int \ddot{x}=\int 1 \\
\dot{x}(0)=10 \\
x(0)=0
\end{array} \quad \begin{aligned}
& \dot{x}(t)=t+c \\
& \dot{x}(0)=10 \Rightarrow c=10
\end{aligned} \quad \begin{aligned}
& \text { C: } 100 \\
& \text { D: } 240 \\
& \text { E: Non }
\end{aligned}
$$

A: 10 meters
B: 600 meters
C: 1000 meters
D: 2400 meters
E : None of the above

$$
\begin{aligned}
& \times(60) \\
& =1800+600 \\
& =2400
\end{aligned}
$$

- What if its acceleration is not constant?

Taylor series intuition (part 2)

- If we know all the derivatives of a polynomial at a point (e.g. at $x=0$), then we can reconstruct the polynomial.

$$
\begin{aligned}
& \text { Ex. } \left.\left.\begin{array}{l}
p(x)=4+3 x+2 x^{2}+x^{3} \\
p^{\prime}(x)=3+4 x+3 x^{3} \\
p^{\prime \prime}(x)=4+6 x \\
p^{\prime \prime}(x)=6
\end{array} \right\rvert\, \begin{array}{l}
p(0)=3 \\
p(0)=4 \\
p^{\prime \prime}(x)=6
\end{array}\right\} \\
& p(x)=a_{0}+t_{1} x+a_{2} y^{2} \operatorname{ta}_{a_{2}} x^{3} \\
& p^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2} \\
& p^{\prime \prime}(x)=2 a_{2}+6 a_{3} x \\
& \left.\begin{array}{c}
p^{(r \prime \prime}(a) 0 \\
\vdots \\
\vdots \\
p^{(r)}(0) 20
\end{array}\right\} \begin{array}{l}
p^{\prime \prime \prime}(x)=6 a_{3} \\
\text { order if } \\
p_{0}^{\prime 2} \\
3
\end{array} \quad\left\{\begin{array}{l}
p(0)=a_{0} \\
p^{\prime}(0)=a_{1} \\
p^{\prime \prime}(0)=2 a_{2} \\
p^{\prime \prime \prime}(0)=6 a_{3}
\end{array}\right. \\
& \Rightarrow a_{0}=4 \\
& a_{1}=3 \\
& a_{2}=2 \\
& a_{3}=1
\end{aligned}
$$

Taylor and Maclaurin series definitions

- The Maclaurin series of a function $f(x)$ is given by

$$
\sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^{i}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
$$

- The Taylor series of a function $f(x)$ at a real number a is the power series

$$
\sum_{i=0}^{\infty} \frac{f^{(i)}(a)}{i!}(x-a)^{i}
$$

- The Maclaurin series is just the Taylor series at $a=0$, and is the power series with matching derivatives at 0 with the original function $f(x)$.

Asides

- The Taylor series for any polynomial is the polynomial itself.
- A Taylor series may not necessarily converge at a point even if the function is well defined.
- A function may differ from the sum of its Taylor series, even if the Taylor series is convergent.
- However, for many common functions, the function and the sum of its Taylor) series are equal in some radius of convergence.

$$
e^{x}, \sin x, \cos x
$$

Examples

- $f(x)=e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}$

Note: $\frac{d}{d x} e^{x}=e^{x}$ so $\quad f^{(i)}(0)=1$
Thy, the Maclansin series is

$$
\sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^{i}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

Example
-What is the Maclaurin series for $f(x)=\cos x$?

$$
\begin{aligned}
& \sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^{i}=1+\frac{0}{1!} x+\frac{-1}{2!} x^{2}+\frac{0}{3!} x^{3}+\frac{1}{4!} x^{4}+\ldots \\
& \left\{\begin{array}{cc}
f(x)=\cos x & f(0)=1 \\
f^{\prime}(x)=-\sin x & f^{\prime}(0)=0 \\
f^{\prime \prime}(x)=-\cos x & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime}(x)=\sin x & f^{\prime \prime \prime}(0)=0 \\
\vdots & \vdots
\end{array}\right. \\
& \begin{array}{l}
=\frac{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}+}{=\sum_{i=0}^{\infty}(-1)^{i} \frac{x^{2 i}}{(2 i)!}}
\end{array}
\end{aligned}
$$

Try it out

- What is the Maclaurin series for $f(x)=\sin x$?

$$
\begin{aligned}
& \sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^{i}=0+x+0-\frac{x^{3}}{3!}+0+\frac{x^{5}}{5!}+0-\frac{x^{7}}{7!}+\cdots \\
& =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \\
& \left\{\begin{array}{cc}
f(x)=\sin x & f(0)=0 \\
f^{\prime}(x)=\cos x & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-\sin x & f^{\prime \prime}(0)=0 \\
f^{\prime \prime}(x)=-\cos x & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=\sin x & \vdots
\end{array}\right. \\
& \mathrm{A}: 1+x+x^{2}+x^{3}+x^{4}+\cdots \\
& \text { B: } 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
& \text { C: } 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots \\
& \mathrm{D}: x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots
\end{aligned}
$$

Proof of Euler's Equation

$$
\begin{aligned}
e^{i x} & =\cos x+i \sin x \\
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots \\
e^{i x} & =1+i x+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\cdots \\
& =1+i x-\frac{x^{2}}{2!}-i \cdot \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+i \frac{x^{5}}{5!}+\cdots \\
& =\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)+i\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \sqrt{5!}\right) \\
& =\cos x+i \sin x
\end{aligned}
$$

