Approximating functions

Lecture 11c: 2023-03-30

MAT A35 - Winter 2023 - UTSC Prof. Yun William Yu

Approximating $\sin x$

- Recall the Taylor series

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots
$$

- Can you approximate $\sin 0.5$ by hand?

$$
\begin{aligned}
\sin 0.5 & =0.5-\frac{0.5^{3}}{3!}+\frac{0.5^{5}}{5!}-\cdots \\
& =0.5-\frac{0.125}{6}+\frac{0.03125}{120}-\cdots \\
& =\frac{0.5-0.02083}{} \quad \sin 0.5=0.479423 \pi \\
& \approx 0.47916 \cdots
\end{aligned}
$$

- We can often approximate a function by cutting off its Taylor series after some number of terms.

Try it out

- What is $e^{0.5}$, approximated using the first 3 terms in its Maclaurin series?

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
e^{0.5} & =1+0.5+\frac{0.5^{2}}{2!}=1+0.5+\frac{0.5^{2}}{2}=1.5+\frac{1}{8} \\
& =1.5+0.0625=1.5625
\end{aligned}
$$

$$
\begin{aligned}
& n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots \cdot n \cdot n \\
& 2!=1 \cdot 2=2 \\
& 3!=1 \cdot 2 \cdot 3=6 \\
& 4!=1 \cdot 2 \cdot 3 \cdot 4=24
\end{aligned}
$$

Constant approximation of a function

- If we keep just the first term of a Taylor series, we get a constant approximation.
Ex. $\quad f(x)=\sin x+\cos x$
Taylor series $\quad f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime}(0)}{3!} x^{3}+\ldots$

$$
\sin x+\cos x \approx f(0)=1
$$

around
0

(x from -6.3 to 6.3)

Linear approximation of a function

- If we keep just the first two terms of a Taylor series, we get a linear approximation.
E. $f(x)=\sin x+\cos x$
$f(0)=1$

$$
f^{\prime}(x)=\cos x-\sin x
$$

$$
f^{\prime}(0)=1
$$

Tan gr series of $\sin x \operatorname{tas} x \approx 1+1 \cdot x=1+x$

Quadratic approximation of a function

- If we keep just the first three terms of a Taylor series, we get a quadratic approximation.
Ex. $f(x)=\sin x+\cos x$

$$
f^{\prime}(x)=\cos x-\sin x
$$

$$
f^{\prime \prime}(x)=-\sin x-\cos x
$$

$$
\begin{aligned}
& f(0)=1 \\
& f^{\prime}(0)=1 \\
& f^{\prime \prime}(0)=-1
\end{aligned}
$$

Taylor series

$$
f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
$$

$\sin x+\cos x \approx 1+x-\frac{x^{2}}{2}$

(x from -6.3 to 6.3)

Qualitative analysis using

approximation

- Often, the qualitative facts we are interested in can be captured by linear or quadratic approximation.
- Constant approximation: roughly where is the function?
- Linear approximation: is the function increasing or decreasing?
- Quadratic approximation: is the function concave up or down?
cubic $=$ lIst 4 toms of Tyyber series

Multivariable functions

- A function $f(x)$ has a linear approximation at a of

$$
\frac{f(a)}{\text { constant }}+\frac{f^{\prime}(a)}{\text { slope }}(x-a)
$$

- A multivariable function $f(x, y)$ has a linear approximation at point (a, b) of

$$
\frac{f(a, b)}{\text { constant }}+\frac{\frac{\partial f(a, b)}{\partial x}}{\substack{\text { slope it } \\ x \text {-divection }}}(x-a)+\frac{\frac{\partial f(a, b)}{\partial y}}{\substack{\text { slope in } \\ y \text {-drection }}}(y-b)
$$

$$
f(x, y)=x^{2}+y^{2}
$$

$$
\text { slope } \frac{\partial f}{\partial x}(1,0)=2
$$

Function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

- A multivariable function $f(x, y)$ has a linear approximation at point (a, b) of

$$
f(a, b)+\frac{\partial f(a, b)}{\partial x}(x-a)+\frac{\partial f(a, b)}{\partial y}(y-b)
$$

- So, $f(x, y) \approx f(a, b)+\left[\begin{array}{ll}\frac{\partial f(a, b)}{\partial x} & \frac{\partial f(a, b)}{\partial y}\end{array}\right]\left[\begin{array}{l}x-a \\ y-b\end{array}\right]$
- Let $h(x, y)=\left[\begin{array}{l}f(x, y) \\ g(x, y)\end{array}\right], h: \mathbb{R}^{2} \rightarrow \underset{\text { Jacobian matrix }}{\mathbb{R}^{2}}$
- Then
$h(x, y) \approx\left[\begin{array}{l}f(a, b) \\ g(a, b)\end{array}\right]+\left[\begin{array}{cc}\frac{\partial x}{\partial g(a, b)} & \frac{\partial g(a, b)}{\partial x}\end{array}\right]\left[\begin{array}{l}x-a \\ \frac{\partial y}{\partial y}-b\end{array}\right]$

Nonlinear phase portraits

$-h(x, y) \approx\left[\begin{array}{l}f(a, b) \\ g(a, b)\end{array}\right]+\left[\begin{array}{ll}\frac{\partial f(a, b)}{\partial x} & \frac{\partial f(a, b)}{\partial y} \\ \frac{\partial g(a, b)}{\partial x} & \frac{\partial g(a, b)}{\partial y}\end{array}\right]\left[\begin{array}{l}x-a \\ y-b\end{array}\right]$

- This approximation holds locally around every point, and therefore around each equilibrium.
- We can thus approximate its behavior by looking at the Jacobian matrix' eigenvalues.

