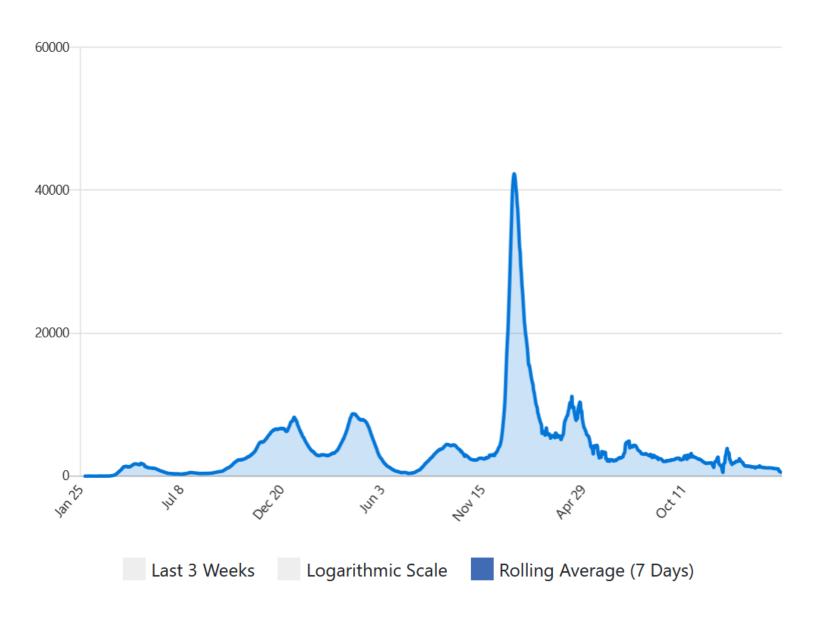


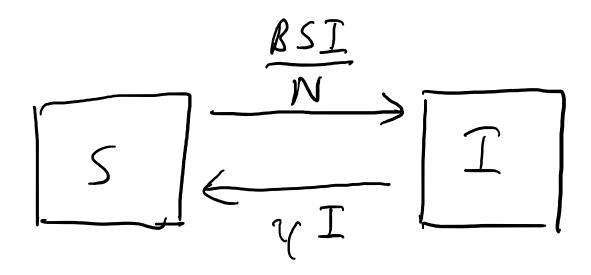
Epidemic curves – Covid19 in Canada



https://covid19tracker.ca/, 7-day rolling average, new cases

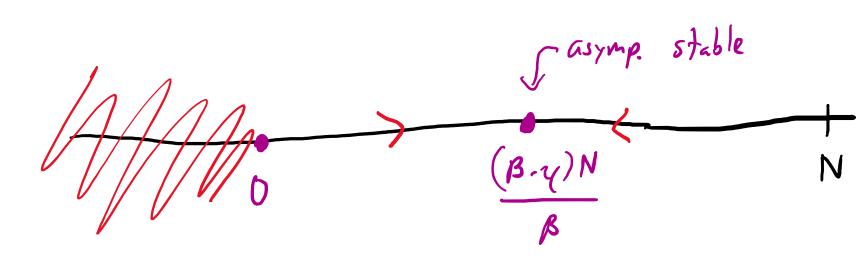
SIS Model

- Modified assumption 1: The infection rate is proportional to the average number of times an infected individual encounters a susceptible individual in the population, assuming random encounters.
- Assumption 2: there is a total fixed population size N = I(t) + S(t), where S is the number of Susceptible individuals.
- Assumption 3: Individuals recover at rate γ , and become susceptible to re-infection.



SIS Model Properties

- In the SIS model, we call the ratio $R_0 = \frac{\beta}{\gamma}$ the basic reproduction number of the system because it is the number of secondary infections β caused during the infectious period $\frac{1}{\gamma}$.
- If $R_0 > 1$, the disease persists and we are at the endemic disease equilibrium.



1D systems and complex behavior

• Autonomous 1D ODE systems $\dot{x} = f(x)$ can't have cycles or any doubling back because you'd have to cross a point going the other direction.

Modelling waves

 How can ODE models capture the infection waves that we see in real epidemics?

A: Add more variables

B: Make them nonautonomous

C: Add in births/deaths

D: All of the above

E: None of the above

SIR Model

- Modified assumption 3: Individuals recover at rate γ , and become Removed R(t) from the population.
- Modified assumption 2: There is a total fixed population size N = I(t) + S(t) + R(t).

Reduce SIR model to two variables

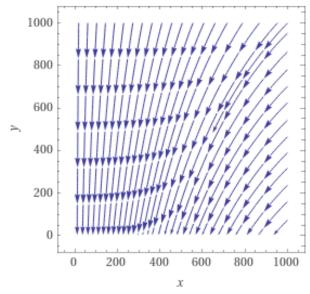
$$\begin{cases}
\dot{S} = -\frac{\beta}{N}SI \\
\dot{I} = \frac{\beta}{N}SI - \gamma I \\
\dot{R} = \gamma I
\end{cases}$$

Plots of basic SIR model

• Let $\beta = 0.1$, $\gamma = 0.2$, N = 1000

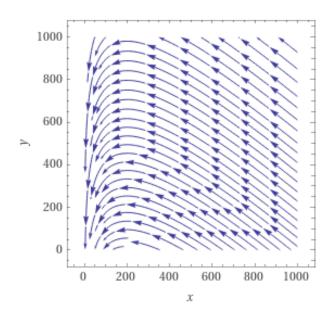
$$\begin{cases}
\dot{S} = -\frac{0.1}{1000}SI \\
\dot{I} = \frac{0.1}{1000}SI - 0.2I
\end{cases}$$

WolframAlpha: streamplot {- 1/10000 * x * y, x*y/10000 - 0.2*y}, x=0..1000, y=0..1000



• Let $\beta = 0.1$, $\gamma = 0.02$, N = 1000

$$\oint_{\dot{I}} \dot{S} = -\frac{0.1}{1000} SI
\dot{I} = \frac{0.1}{1000} SI - 0.02I$$



Basic SIR model gives a single wave

- Again, $R_0 = \frac{\beta}{\gamma}$.
- If $R_0 < 0$, then no epidemic happens because infected individuals never increase.
- If $R_0 > 1$, then an epidemic with a single wave happens.
- Then higher the R_0 , the higher the peak. We can "flatten the curve" by reducing β , the transmission rate.
- https://www.geogebra.org /m/p5ucts38
 by Ivan De Winne

Nonautonomous Epidemic model

• What if β is sometimes high, and sometimes low, as a function of time?

• Then $\begin{cases} \dot{S} = -\frac{\beta(t)}{N}SI \\ \dot{I} = \frac{\beta(t)}{N}SI - \gamma I \end{cases}$ is not autonomous.

(autonomous) SIRS Epidemic Model

• Assumption 4: Removed individuals lose immunity at rate ν .

Phase plane analysis of SIRS model

$$\oint \dot{S} = -\frac{\beta}{N}SI + \nu(N - I - S)$$

$$\dot{I} = \frac{\beta}{N}SI - \gamma I$$

Qualitative analysis of equilibria

$$\oint \dot{S} = -\frac{\beta}{N}SI + \nu(N - I - S)$$

$$\dot{I} = \frac{\beta}{N}SI - \gamma I$$

• Equilibria at

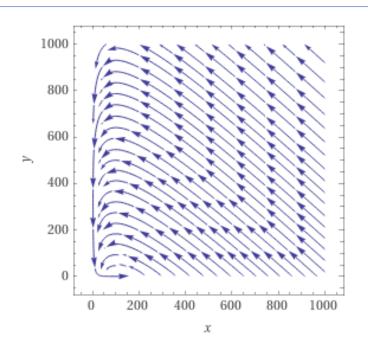
$$\begin{cases} (S,I) = (N,0) \\ (S,I) = \left(\frac{N\gamma}{\beta}, \frac{\nu N\left(1-\frac{\gamma}{\beta}\right)}{\gamma+\nu}\right) \end{cases}$$

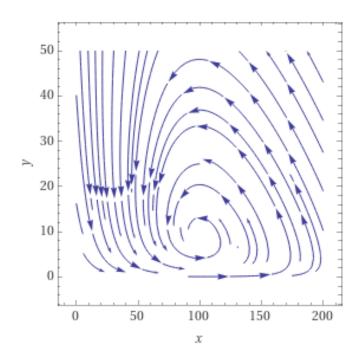
Example with periodic behavior

•
$$\beta = 0.1$$
, $\gamma = 0.01$, $\nu = 0.0001$, $N = 1000$
• $\dot{S} = -\frac{\beta}{N}SI + \nu(N - I - S)$
 $= -0.0001SI + 0.0001(1000 - S - I)$
• $\dot{I} = \frac{\beta}{N}SI - \gamma I = 0.0001SI - 0.01I$
• Equilibria: $(S,I) = (1000,0)$ or $(S,I) \approx (100,8.91)$
• Jacobian $J(S,I) = \begin{bmatrix} -0.0001I - 0.0001S - 0.0001\\ 0.0001I & 0.0001S - 0.001 \end{bmatrix}$
• $J(1000,0) = \begin{bmatrix} -0.0001 & -0.1001\\ 0 & 0.09 \end{bmatrix}$, $\lambda_1 = -0.0001$, $\lambda_2 = 0.09$, saddle pt
• $J(100,8.91) = \begin{bmatrix} -0.000991 & -0.0101\\ 0.000891 & 0 \end{bmatrix}$, $\lambda_{1,2} \approx -0.0004955 \pm 0.00296i$ so the equilibrium is an attracting spiral

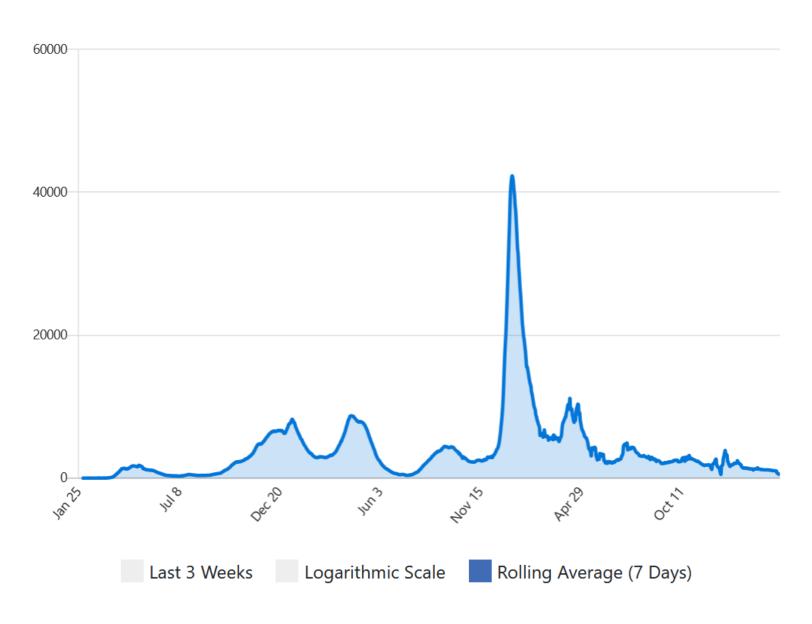
Visualization

- streamplot {- x * y/10000 + 0.0001*(1000-x-y), x*y/10000 0.01*y}, x=0..1000, y=0..1000
- streamplot {- x * y/10000 + 0.0001*(1000-x-y), x*y/10000 0.01*y}, x=0..400, y=0..50





Epidemic curves – Covid19 in Canada

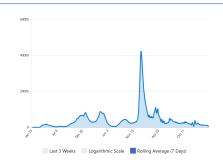


https://covid19tracker.ca/, 7-day rolling average, new cases

More sophisticated epidemic models

- Vaccinations
- Birth/Death
- Exposed but not Infectious

Modelling summary



- We can build models of complex biological phenomenon like epidemics by looking at behavior we care about and adding more assumptions to reproduce that real behavior in our models.
- Sometimes, we can get similar behavior with two different assumptions, so as mathematical biologists we need to decide what fits better.
- For epidemic modelling, these can include additional variables/compartments, as well as new arrows between compartments.