# Final Review Session Lecture 13: 2023-04-06 

MAT A35 - Winter 2023 - UTSC Prof. Yun William Yu

## Basic derivative/integration table

## Derivative rule

$$
\begin{aligned}
& \frac{d}{d x}[k x]=k \int k d x=k x+C \\
& \frac{d}{d x}\left[\frac{x^{r+1}}{r+1}\right]=x^{r}, \quad r \neq-1 \int x^{r} d x=\frac{x^{r+1}}{r+1}+C, \quad r \neq- \\
& \frac{d}{d x}[\ln |x|]=\frac{1}{\mathrm{x}}=\mathrm{x}^{-1} \int x^{-1} d x=\ln |x|+C \\
& \frac{d}{d x}\left[\frac{1}{a} e^{a x}\right]=e^{a x} \int e^{a x} d x=\frac{1}{a} e^{a x}+C \\
& \frac{d}{d x}\left[-\frac{1}{a} \cos a x\right]=\sin a x d x=-\frac{1}{a} \cos a x+C \\
& \frac{d}{d x}\left[\frac{1}{\mathrm{a}} \sin a x\right]=\cos a x \int \cos a x d x=\frac{1}{\mathrm{a}} \sin a x+C
\end{aligned}
$$

## Derivative rules

- Chain rule: $\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$
- Product rule: $\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+$ $f^{\prime}(x) g(x)$
- Quotient rule: $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}$


## Integration techniques

- Substitution method
- Guess an appropriate $u$
- Compute $d u, d x$, and $x$
- Substitute to get rid of $x$ 's
- Integrate as a function of $u$
- Convert back to $x^{\prime}$ s
- Integration by parts
- $\int u d v=u v-\int v d u$
- DETAIL heuristic to guess $u$ vs. $d v$
- Apply formula to see if it works.
- Partial fractions
$\frac{A}{a x+b}+\frac{B}{c x+d}=$
$\frac{A(c x+d)+B(a x+b)}{(a x+b)(c x+d)}$


## Matrix multiplication

- Let $A$ be a $m \times n$ matrix and let $B$ be a $n \times p$ matrix. Then the product $C=A B$ is a $m \times p$ matrix such that

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots a_{i k} b_{k j}
$$

## Matrix eigenvalues and eigenvectors

- A square matrix $A$ 's eigenpairs: $(\lambda, v)$ such that $A v=\lambda v$.
- You can compute the eigenvalues by $\operatorname{det}(\lambda I-A)=0$.
- Then you can compute the eigenvectors by solving.


## Leslie diagrams and matrices

- Leslie diagram arrows represent how each life stage gives rise to individuals in the next life stage.
- Leslie matrices encode that into a matrix; each column encodes all arrows that starts from the corresponding node. Each row encodes all arrows that end in the corresponding node.


## Leslie matrices and population

 prediction- If we are given a Leslie matrix $L$ and a current population vector $p$, then the population one "cycle" later will be $L p$, two cycles later will be $L \cdot L p=L^{2} p$, etc.
- Furthermore, the population one cycle earlier can be computed by solving the equation $L x=p$, or by using the matrix inverse and computing $x=L^{-1} p$.


## Separation of variables

- Let $\frac{d y}{d x}=f(x) g(y)$.
- Then $\frac{d y}{g(y)}=f(x) d x$.
- Integrate both sides.


## Exact differentials

- $P(x, y) d x+Q(x, y) d y=0$, where there exists a function $f(x, y)$ such that $\frac{\partial f}{\partial x}=P$ and $\frac{\partial f}{\partial y}=Q-$ Alternate check: $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$
- Then $f(x, y)=C$


## Constant coefficient homogeneous

- Find all roots $\lambda_{1}, \ldots, \lambda_{n}$ of characteristic polynomial.
- A root with multiplicity 1 means that $e^{\lambda x}$ is a solution.
- A root with multiplicity k means that $x^{k-1} e^{\lambda x}$ is a solution.
- Take all linear combinations of those solutions.


## Method of undetermined coefficients

- Applicable to constant coefficient linear inhomogeneous ODEs.
- First find homogeneous solution.
- Then guess an Ansatz for the particular solution that has terms corresponding to each of the derivatives of the terms in the RHS.
- Get general solution by combining homogeneous and particular solutions.


## Homogeneous linear systems

- Given a matrix ODE $z=A z$, if there is an eigenbasis for $A$, then $z=\sum_{i=1}^{n} c_{i} v_{i} e^{\lambda_{i} t}$, where ( $\lambda_{i}, v_{i}$ ) are eigenpairs.


## Phase lines

- For a 1-variable autonomous ODE $\dot{x}=f(x)$, we can draw a phase line by looking at the sign of $\dot{x}$.
- Equilibria are at points where $\dot{x}=0$.
- If $\dot{x}>0$, then arrows point right-ward.
- If $\dot{x}<0$, then arrows point left-ward.
- If both arrows point inward to an equilibrium, asymptotically stable.
- If both arrows point outward from an equilibrium, then unstable.
- If one points inward and the other outward, then semi-stable.


## Critical points of multivariable function

- Given $f(x, y)$, the critical points are where $f_{x}=0$ and $f_{y}=0$.
- The Hessian matrix is $H(x, y)=\left[\begin{array}{ll}f_{x x} & f_{x y} \\ f_{y x} & f_{y y}\end{array}\right]$.
- If the Hessian matrix at a critical point has all positive eigenvalues, then the critical point is a local minimum.
- If the Hessian matrix at a critical point has all negative eigenvalues, then the critical point is a local maximum.
- If the Hessian matrix has opposite-sign critical points, then it is a saddle point.


## Stability analysis: autonomous 2D

 system- Consider a linear autonomous system $\left\{\begin{array}{l}\dot{x}=f(x, y) \\ \dot{y}=g(x, y)\end{array}\right.$.
- Equilibria are where $\dot{x}=0$ and $\dot{y}=0$.
- The Jacobian matrix is $\left[\begin{array}{ll}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right]$, and its eigenvalues at an equilibrium determine its classification/stability.
- Positive real parts mean that trajectories go outward.
- Negative real parts mean that trajectories go inward.
- Opposite sign eigenvalues mean you have a saddle point.
- Nonzero imaginary components mean that trajectories spiral.


## Classification of types

- Nodes: both eigenvalues are real and have the same sign. Unstable node if both positive, asymptotically stable node if both negative.
- Saddle point: both eigenvalues are real and have opposite sign.
- Spirals: complex eigenpair. If real parts are positive, unstable. If real parts are negative, asymptotically stable.
- Center: pure imaginary eigenpair. "stable"


## Power series

- $f(x) \approx f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots$
- Also, power series can be manipulated like polynomials.
- This includes, addition, subtraction, multiplication, and derivatives.

