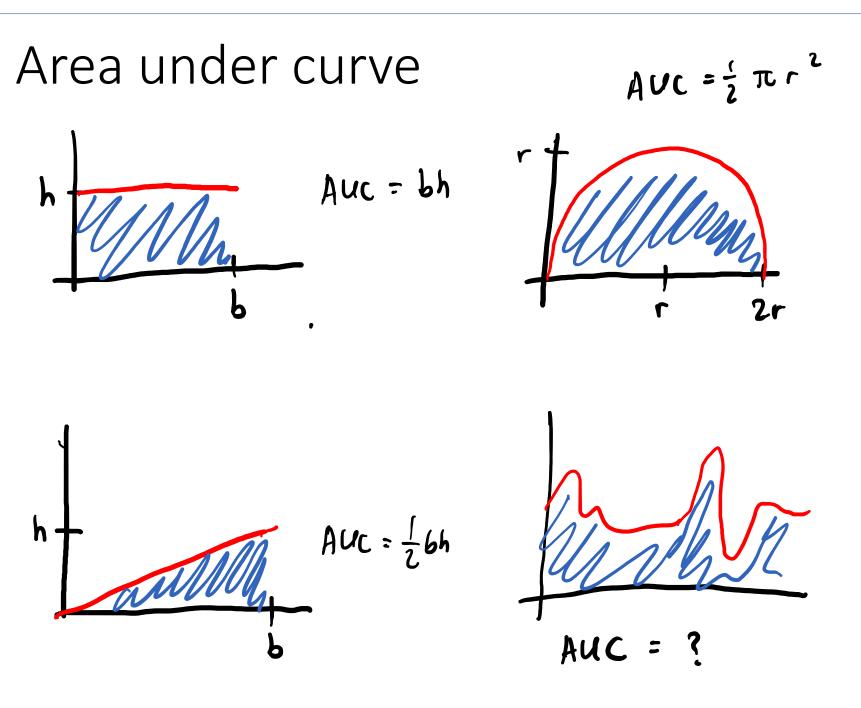
# Area under curves and the Fundamental Theorem of Calculus Lecture 1b: 2023-01-09

MAT A02 – Winter 2023 – UTSC Prof. Yun William Yu

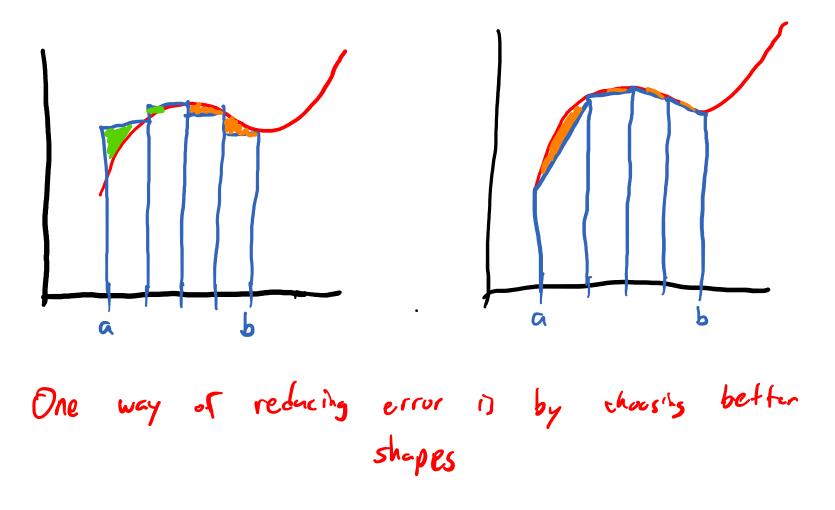
#### Can reverse many differentiation rules

| Derivative rule                                                        | Integration rule                                          |
|------------------------------------------------------------------------|-----------------------------------------------------------|
|                                                                        |                                                           |
| $\frac{d}{dx}[kx] = k$                                                 | $\int k  dx = kx + C$                                     |
| $\frac{d}{dx}\left[\frac{x^{r+1}}{r+1}\right] = x^r, \qquad r \neq -1$ | $\int x^r dx = \frac{x^{r+1}}{r+1} + C, \qquad r \neq -1$ |
| $\frac{d}{dx}[\ln x ] = \frac{1}{x} = x^{-1}$                          | $\int x^{-1}  dx = \ln x  + C$                            |
| $\frac{d}{dx} \left[ \frac{1}{a} e^{ax} \right] = e^{ax}$              | $\int e^{ax} dx = \frac{1}{a}e^{ax} + C$                  |
| $\frac{d}{dx}\left[-\frac{1}{a}\cos ax\right] = \sin ax$               | $\int \sin ax  dx = -\frac{1}{a} \cos ax + C$             |
| $\frac{d}{dx}\left[\frac{1}{a}\sin ax\right] = \cos ax$                | $\int \cos ax \ dx = \frac{1}{a} \sin ax + C$             |
| $\frac{d}{dx}\left[\frac{1}{a}\tan ax\right] = \sec^2 ax$              | $\int \sec^2 ax \ dx = \frac{1}{a} \tan ax + C$           |
| $\frac{d}{dx}\left[-\frac{1}{a}\cot ax\right] = \csc^2 ax$             | $\int \csc^2 ax \ dx = -\frac{1}{a}\cot ax + C$           |
| $\frac{d}{dx}\left[\frac{1}{a}\sec ax\right] = \sec ax \tan ax$        | $\int \sec ax \tan ax  dx = \frac{1}{a} \sec x + C$       |
| $\frac{d}{dx}\left[-\frac{1}{a}\csc ax\right] = \csc ax \cot ax$       | $\int \csc ax \cot ax  dx = -\frac{1}{a} \csc ax + C$     |



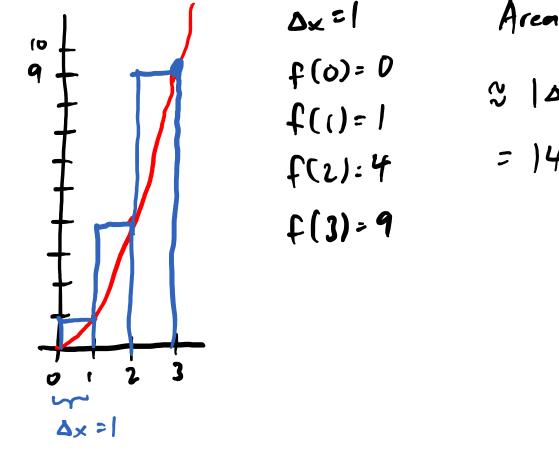
## Riemann sums and trapezoid rule

 We can approximate area under any curve by dividing into shapes we know how to compute area for, like rectangles or trapezoids



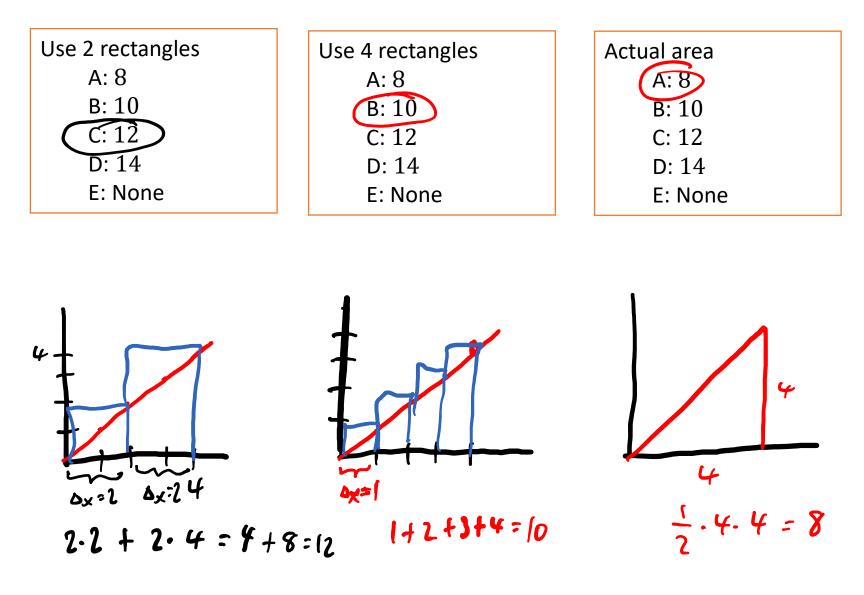
## Example

• Approximate the area under the parabola  $y = x^2$ between 0 and 3 using a Riemann sum with 3 rectangles.



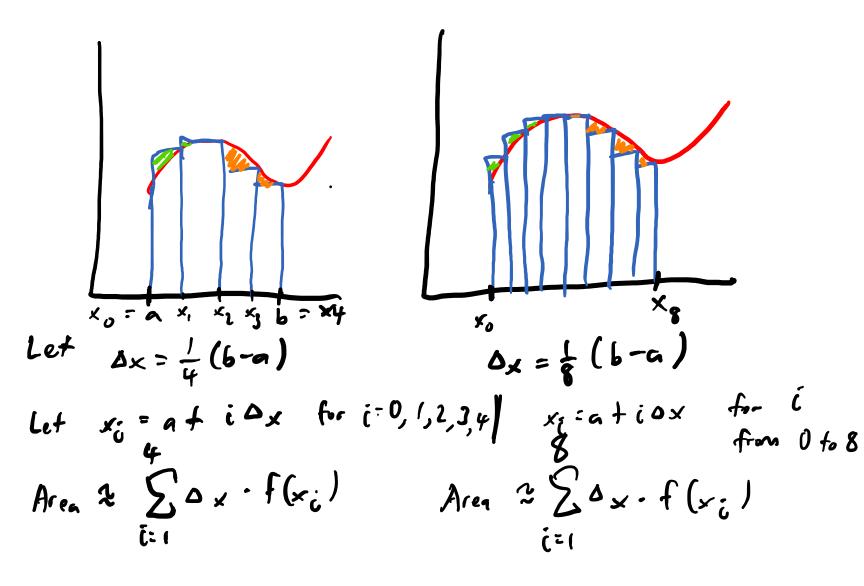
## Try it out

Approximate the area under the line y = x between
 0 and 4 using a Riemann sum.



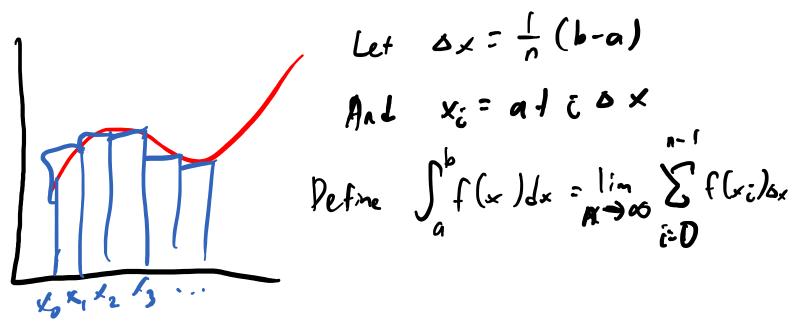
### More rectangles

 Another way to decrease approximation error is to use more rectangles.



## Infinite rectangles!

• Take the limit as the rectangles become infinitely thin.



Definition: Let f be a continuous function on [a, b] with a < b. Then the definite integral of f from a to b is defined by

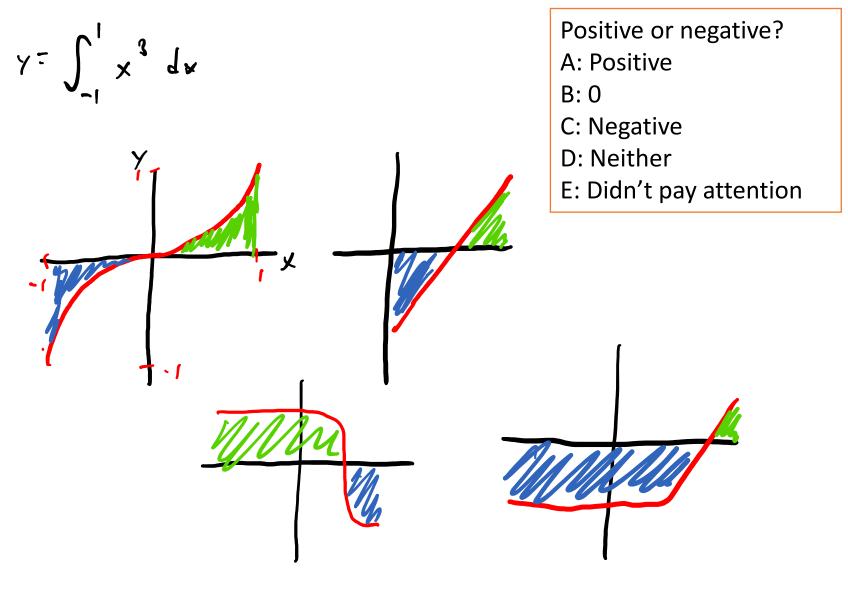
$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i) \Delta \mathbf{x}$$

where  $\Delta x = \frac{1}{n}(b-a)$  and  $x_i = a + i\Delta x$ . a and b are the *limits of integration*. If f(x) > 0 on [a, b], then the definite integral represents the area between the curve y = f(x) and the x-axis.

Riemann sum example:  $\int_0^4 x^2 dx$ Let  $f(r) = r^2$ 8x= 4-0-4  $\begin{array}{c} x_{o} = 0 \\ x_{1} = \Delta x = \frac{4}{n} \\ \vdots \\ x_{2} = 2\Delta x = \frac{1}{n} \\ \vdots \\ x_{c} = i\Delta x = \frac{4}{n} \\ x_{c} = i\Delta x = \frac{4}{n} \end{array} \qquad \begin{array}{c} n \\ \sum_{i=1}^{n} f(x_{i})\Delta x^{-} \sum_{i=1}^{n} f(\frac{4}{n}) \\ i = 1 \\ n \\ \vdots \\ \sum_{i=1}^{n} f(\frac{4}{n})^{2} \cdot \frac{4}{n} \\ i = 1 \\ - (\frac{4}{n})^{2} \cdot \sum_{i=1}^{n} i^{2} \end{array}$ rectorale i  $f(x_i) = x_i$  $= \left(\frac{4}{n}\right)^{3} \cdot \frac{n(a+1)(2a+1)}{6} = \frac{32(a+1)(2a+1)}{2a+1}$  $= \int_{0}^{4} \int_{0}^{4} \int_{0}^{2} dx = \lim_{n \to \infty} \frac{32(n+1)(2n+1)}{3n^{2}} = \frac{32}{3} \lim_{n \to \infty} \frac{2n^{2} + J_{n+1}}{3n^{2}}$  $=\frac{32}{1}\cdot 2=\frac{64}{2}$ .

## Signed Area 🛛 🔨

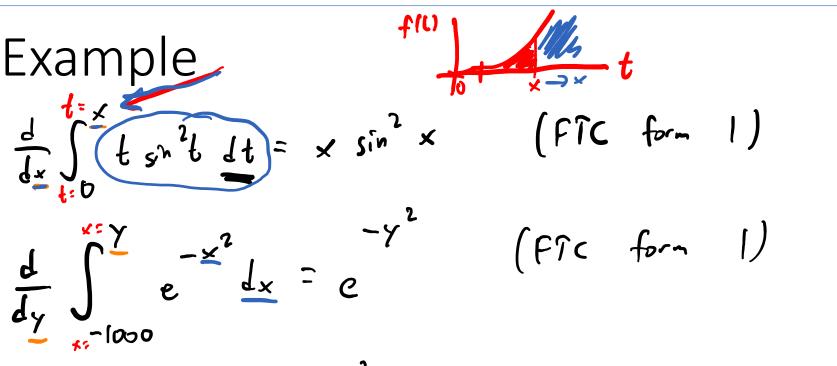
The definite integral gives a signed area, which is positive when the function is positive and negative when the function is negative.

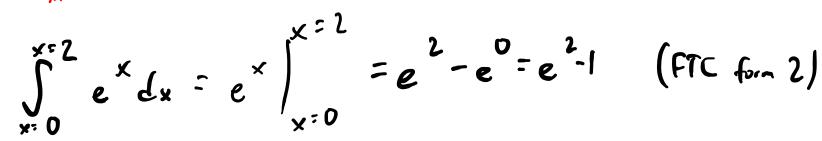


## Fundamental Theorem of Calculus

- First form of the Fundamental Theorem of Calculus
  - Let f be a continuous function and let  $A(x) = \int_a^x f(t) dt$ . Then A'(x) = f(x)
  - If you integrate a function and then take the derivative, you get the same function back.
- Second form of the Fundamental Theorem of Calculus
  - Let f(x) be a continuous function and suppose that g'(x) = f(x) (i.e. g(x) is an antiderivative of f(x)). Then  $\int_{a}^{b} f(x)dx = g(b) - g(a)$
  - You can use the antiderivative of a function to compute the definite integral without explicitly using infinite Riemann sums.

Note: 
$$\int f(x) dx = g(x) f(x) dx = g(b) - g(a) e definite, no
shown$$





$$\int_{x=\frac{\pi}{2}}^{x=\pi} \sin x \, dx = -\cos x \left| \begin{array}{c} \pi \\ = (-\cos \pi) - (-\cos \frac{\pi}{2}) = -(-1) - 0 \\ = 1 \\ \hline \pi \\ = 1 \\ \hline \pi \\ = \frac{d}{4x} \left[ -\cos \frac{\pi}{4x} + 1 \right] = \sin x \end{array} \right|$$

Application  

$$\begin{array}{c} cells / hour \\ \underline{r \quad int \quad our \quad hours} \\ cells \\ \end{array} \quad x^{\circ} = 1 \quad fr \quad ary \\ \underline{r \quad our \quad hours} \\ cells \\ \hline r \quad our \quad hours \\ cells \\ \hline r \quad our \quad hours \\ cells \\ \hline r \quad our \\ cells \\ \end{array}$$
• Bacteria in a petri dish grow at a rate of  $P'(t) = 1$   
100 $e^{-t}$  cells per hour, where  $t$  is time in hours.  
Determine how much the population increases from time  $t = 0$  to time  $t = 2$ .  

$$\begin{array}{c} \int e^{-t} dt & e^{-t} dt \\ \hline f = 0 \\ 0 \\ e^{-t} dt \\ \hline f = 0 \\ \hline$$

## Application

- Corn needs 1.5 inches of rainfall or watering per week.
- Suppose it rains today between noon and 1pm at a rate of  $f(t) = 2 t^2$  inches/hour, where t is the number of hours since noon.
- Did it rain enough that you do not need to water your corn field?
  - corn field?  $\int_{0}^{1} f(t) dt = \int_{0}^{1} (2 - t^{2}) dt = \left[ 2t - \frac{t^{3}}{3} t^{3} \right]_{t=0}^{t=1}$   $= 2 - \frac{t^{3}}{3} = 1.667 \text{ inclus}$

A: Yes B: Maybe C: No D: No clue E: ???

