More advanced integration

Lecture 1c: 2023-01-12

MAT A02 - Winter 2023 - UTSC Prof. Yun William Yu

Average of a function

- Let $f:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ be a continuous function. Then its average value $y_{a v}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
E. $f(x)=x^{2}$ Find averse value blt - 1 and 1 .

Properties of definite integrals

- Constant multiplication: $\int_{a}^{b} k \cdot f(x) d x=k \cdot \int_{a}^{b} f(x) d x$

$$
\int_{0}^{1} 2 \cdot x d x=2 \int_{0}^{1} x d x
$$

- Sum of different integrands with same bounds

$$
\begin{aligned}
& \text { - } \int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
& \int_{0}^{1}(1+x) d x=\int_{0}^{1} 1 d x+\int_{0}^{1} x d x
\end{aligned}
$$

- Sum of same integrand with touching bounds

$$
\text { - } \int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x \text { where } a<b<c
$$

$$
\int_{0}^{1} \sin x d x+\int_{1}^{2 \pi} \sin x d x=\int_{0}^{2 \pi} \sin x d x
$$

$$
\begin{aligned}
& \text { Try it out } \\
& =\int_{1}^{2}+\int_{2}^{3}-\int_{1}^{2} \\
& \underbrace{\int_{0}^{2} x^{2} d x+\int_{0}^{2} 5 d x}+\underbrace{\int_{1}^{3}\left(x^{2}+5\right) d x-\int_{1}^{2}\left(x^{2}+5\right)} d x \\
& \int_{0}^{2}\left(x^{2}+5\right) d x \quad \int_{2}^{3}\left(x^{2}+5\right) d x \\
& =\int_{0}^{3}\left(x^{2}+5\right) d x=\left[\frac{1}{3} x^{3}+5 x\right]_{0}^{3}=9+15=2 x
\end{aligned}
$$

Area between curves

Let f and g be continuous functions, and suppose that $f(x) \geq g(x)$ over the interval $[a, b]$. Then the area of the region between the two curves on that interval is
$\int_{a}^{b}[f(x)-g(x)] d x$.

When $[a, b]$ are unknown, can compute the intersection points to figure out the area bounded by curves.

Example

- Find the area bounded by the graphs of

$$
f(x)=2 x-2 \text { and } g(x)=x^{2}-2
$$

Intersections $\quad f(x)=g(x)$

$$
\begin{gathered}
\Rightarrow x^{2}-2=2 x-2 \\
x^{2}-2 x=0 \\
x(x-2)=0 \\
x=0,2
\end{gathered}
$$

Area: $\int_{0}^{2}\left[f(x)-g c_{x}\right] d x$

$$
\begin{aligned}
& =\int_{0}^{2}\left(2 x-x^{2}\right) d x \\
& =\left[x^{2}-\frac{1}{3} x^{3}\right]_{0}^{2}=4-\frac{8}{3}=\frac{4}{3}
\end{aligned}
$$

Try it out

- Find the area bounded by graphs of $f(x)=x^{2}$ and $g(x)=x$.
- Step 1: find the intersection points.

$$
\Rightarrow x=0,1
$$

$$
\begin{aligned}
& \text { A: }-1,1 \\
& \text { B: } 0,2 \\
& \text { C: }-1,0 \\
& \text { D: } 0,1 \\
& \text { E: None of the above }
\end{aligned}
$$

- Step 2: Decide which graph is on top.

A: $f(x)$
B: $g(x)$
C: neither
D: both
E: ?????
- Step 3: Compute the integral.

$$
\begin{aligned}
\int_{0}^{1}\left[x-x^{2}\right] d x & =\left[\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1} \\
& =\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

A: $1 / 3$
B: $1 / 4$
C: $1 / 5$
D: $1 / 6$
E: None of the above

