Matrix operations Lecture 3a: 2023-01-23

MAT A35 – Winter 2023 – UTSC Prof. Yun William Yu

Scalars to Vectors

• A scalar is a single number $a \in \mathbb{R}$.

• A vector is a collection of n numbers $v = \{v_1, v_2, ..., v_n\} \in \mathbb{R}^n$.

Operations on Vectors

Addition: only works on same size vectors.

Multiplication by Scalar

Dot Product on Vectors

• Given two vectors of the same size $a,b \in \mathbb{R}^n$, where $a=\{a_1,\ldots,a_n\}$ and $b=\{b_1,\ldots,b_n\}$, the dot product $a\cdot b=a_1b_1+a_2b_2+\cdots+a_nb_n$, a scalar.

 The dot product intuitively tells you how similar two vectors are.

$$\bullet \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

A:
$$\binom{-2}{2}$$
, B: 0, C: -3 , D: $\binom{-1}{3}$, E: None

$$\cdot \begin{pmatrix} -2 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$\bullet \begin{pmatrix} -2 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 A: $\begin{pmatrix} -1 \\ 7 \end{pmatrix}$, B: $\begin{pmatrix} -1 \\ 7 \\ 3 \end{pmatrix}$, C: 8, D: 0, E: None

$$\bullet 0 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

•
$$0 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 A: $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, B: $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, C: $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, D: 0, E: None

Vectors to Matrices

- A matrix is a rectangular grid of scalars, with several important properties.
 - A matrix $A=[a_{ij}]$ with size $m\times n$ has m rows and n columns, and a_{ij} represents the entry in the ith row and jth column.
 - Like vectors, can add matrices, and multiply by a scalar.

Matrix transposition

- Let a matrix $A=[a_{ij}]$ with size $m\times n$ has m rows and n columns, where a_{ij} represents the entry in the ith row and jth column.
- Then the transpose $B = \begin{bmatrix} b_{ij} \end{bmatrix} = A^T$ has size $n \times m$, which means it has n rows and m columns, and $b_{ij} = a_{ji}$.
- Transposition flips all terms across the diagonal line from the top-left to the bottom-right.

Row and column matrices = vectors

A matrix with just 1 row is a row vector.

 A matrix with just 1 column is a column vector. Normally, when we say vector, we will refer to a column vector.

Matrix Products

- Let A be a $m \times n$ matrix and let B be a $n \times p$ matrix. Then the product C = AB is a $m \times p$ matrix such that $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj}$
- Alternately, can think of A as a collection of m stacked row vectors, and B as a collection of p column vectors. Then c_{ij} is the dot product of the ith row and the jth column, as vectors.

$$\bullet \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$$

A: 32
B:
$$\begin{bmatrix} 4 \\ 10 \\ 18 \end{bmatrix}$$
C: $\begin{bmatrix} 4 & 10 & 18 \end{bmatrix}$
D: $\begin{bmatrix} 4 & 5 & 6 \\ 8 & 10 & 12 \\ 12 & 15 & 18 \end{bmatrix}$
E: None

A:
$$\begin{bmatrix} 17 \\ 39 \end{bmatrix}$$
B: $\begin{bmatrix} 5 & 10 \\ 18 & 24 \end{bmatrix}$
C: $\begin{bmatrix} 23 & 34 \end{bmatrix}$

D: 56

E: None

Outer products

Matrix multiplication using outer products

Matrices are transformations of vectors

• Scaling operators:
$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

• Stretching/squashing:
$$\begin{bmatrix} 0.5 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0.5x \\ 2y \end{bmatrix}$$

• Rotations:
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$$

Etc...

Application: Leslie Matrices

- Consider a rabbit population that can be divided into two age classes: young and adult.
 - Young rabbits can reach sexual maturity within 6-7 months.
 - Adult rabbits live on average for 9 years.
- Let's consider a *state vector* of the rabbit population:

[number of young rabbits] number of adult rabbits

 Each year, both the young and adult rabbits have a chance of surviving (survivability), and a number of offspring (fecundity), which we can encode in a *Leslie* matrix.

average fecundity of young survivability of young

average fecundity of adults survivability of adults

Rabbit population - continued

[average fecundity of young survivability of young

average fecundity of adults | [number of young rabbits]

survivability of adults | number of adult rabbits

- = [number of offspring of young + number of offspring of adults] number of surviving young + number of surviving adults]
 - = [number of young rabbits the following year] number of adult rabbits the foollowing year]

Leslie Diagrams

• We can encode a Leslie matrix as a graph

 A population of birds has the following Leslie diagram with 100 hatchlings (H) and 40 adults (A) in year 1.
 Estimate the number of hatchlings and young in year 2.

A: 100 hatchlings, 40 adults

B: 100 hatchlings, 85 adults

C: 200 hatchlings, 40 adults

D: 200 hatchlings, 85 adults

E: None

Matrix identity

• Identity matrix: a special $n \times n$ matrix $I_n = I$ such that AI = A for any $m \times n$ matrix and IA = A for any $n \times m$ matrix.

$$I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \text{ has 1's on diagonal and 0's elsewhere.}$$

Matrix algebra

$$\bullet A(BC) = (AB)C$$

$$\bullet A(B+C) = AB + AC$$

$$\bullet (B+C)A = BA + CA$$

• $AB \neq BA$ (in general)

$$\bullet \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix})$$

$$\cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix})$$

A:
$$\begin{bmatrix} 3 & 5 \\ 5 & 9 \end{bmatrix}$$
B: $\begin{bmatrix} 2 & 5 \\ 5 & 8 \end{bmatrix}$
C: $\begin{bmatrix} 5 & 11 \\ 11 & 25 \end{bmatrix}$
D: $\begin{bmatrix} 6 & 11 \\ 11 & 26 \end{bmatrix}$
E: None

A:
$$\begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix}$$
B:
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
C:
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
D:
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
E: None