Matrix operations Lecture 3a: 2023-01-23

MAT A35 - Winter 2023 - UTSC Prof. Yun William Yu

Scalars to Vectors

- A scalar is a single number $a \in \mathbb{R}$.
- A vector is a collection of n numbers $v=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \in \mathbb{R}^{n}$.

Operations on Vectors

- Addition: only works on same size vectors.
- Multiplication by Scalar

Dot Product on Vectors

- Given two vectors of the same size $a, b \in \mathbb{R}^{n}$, where $a=\left\{a_{1}, \ldots, a_{n}\right\}$ and $b=\left\{b_{1}, \ldots, b_{n}\right\}$, the dot product $a \cdot b=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}$, a scalar.
- The dot product intuitively tells you how similar two vectors are.

Try it out

 $\cdot\binom{1}{2} \cdot\binom{-2}{1}$A: $\binom{-2}{2}, \quad B: 0, C:-3, D:\binom{-1}{3}, \quad E:$ None
$\cdot\binom{-2}{5}+\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$

$$
\mathrm{A}:\binom{-1}{7}, \mathrm{~B}:\left(\begin{array}{c}
-1 \\
7 \\
3
\end{array}\right), \mathrm{C}: 8, \mathrm{D}: 0, \mathrm{E}: \text { None }
$$

$\cdot 0\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)-2\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

$$
\text { A: }\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \mathrm{B}:\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \mathrm{C}:\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right), \mathrm{D}: 0, \mathrm{E}: \text { None }
$$

Vectors to Matrices

- A matrix is a rectangular grid of scalars, with several important properties.
- A matrix $A=\left[a_{i j}\right]$ with size $m \times n$ has m rows and n columns, and $a_{i j}$ represents the entry in the i th row and j th column.
- Like vectors, can add matrices, and multiply by a scalar.

Matrix transposition

- Let a matrix $A=\left[a_{i j}\right]$ with size $m \times n$ has m rows and n columns, where $a_{i j}$ represents the entry in the i th row and j th column.
- Then the transpose $B=\left[b_{i j}\right]=A^{T}$ has size $n \times m$, which means it has n rows and m columns, and $b_{i j}=a_{j i}$.
- Transposition flips all terms across the diagonal line from the top-left to the bottom-right.

Row and column matrices $=$ vectors

- A matrix with just 1 row is a row vector.
- A matrix with just 1 column is a column vector. Normally, when we say vector, we will refer to a column vector.

Matrix Products

- Let A be a $m \times n$ matrix and let B be a $n \times p$ matrix. Then the product $C=A B$ is a $m \times p$ matrix such that

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots a_{i k} b_{k j}
$$

- Alternately, can think of A as a collection of m stacked row vectors, and B as a collection of p column vectors. Then $c_{i j}$ is the dot product of the i th row and the j th column, as vectors.

Try it out

$\cdot\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}4 & 5 & \text { 6 }\end{array}\right]\left[\begin{array}{l}\text { A: } 32 \\ \text { B: } \\ 18 \\ 18 \\ 18\end{array}\right]$
C: $\left[\begin{array}{lll}4 & 10 & 18\end{array}\right]$
D: $\left[\begin{array}{ccc}4 & 5 & 6 \\ 8 & 10 & 12 \\ 12 & 15 & 18\end{array}\right]$
E: None

- $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}5 \\ 6\end{array}\right]$
A: $\left[\begin{array}{l}17 \\ 39\end{array}\right]$
B: $\left.: \begin{array}{cc}5 & 10 \\ 18 & 24\end{array}\right]$
C: $\left.\begin{array}{ll}23 & 34\end{array}\right]$
D: 56
E: None

Outer products

Matrix multiplication using outer products

Matrices are transformations of vectors

- Scaling operators: $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 x \\ 2 y\end{array}\right]$
- Stretching/squashing: $\left[\begin{array}{cc}0.5 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}0.5 x \\ 2 y\end{array}\right]$
- Rotations: $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-y \\ x\end{array}\right]$
- Etc...

Application: Leslie Matrices

- Consider a rabbit population that can be divided into two age classes: young and adult.
- Young rabbits can reach sexual maturity within 6-7 months.
- Adult rabbits live on average for 9 years.
- Let's consider a state vector of the rabbit population: $\left[\begin{array}{c}\text { number of young rabbits } \\ \text { number of adult rabbits }\end{array}\right]$
- Each year, both the young and adult rabbits have a chance of surviving (survivability), and a number of offspring (fecundity), which we can encode in a Leslie matrix.
[average fecundity of young survivability of young
average fecundity of adults] survivability of adults

Rabbit population - continued

 $\left[\begin{array}{cc}\text { average fecundity of young } & \text { average fecundity of adults } \\ \text { survivability of young } & \text { survivability of adults }\end{array}\right]\left[\begin{array}{c}\text { number of young rabbits } \\ \text { number of adult rabbits }\end{array}\right]$$$
\begin{gathered}
=\left[\begin{array}{c}
\text { number of offspring of young }+ \text { number of offspring of adults } \\
\text { number of surviving young + number of surviving adults }
\end{array}\right] \\
=\left[\begin{array}{c}
\text { number of young rabbits the following year } \\
\text { number of adult rabbits the foollowing year }
\end{array}\right]
\end{gathered}
$$

Leslie Diagrams

- We can encode a Leslie matrix as a graph

Try it out

- A population of birds has the following Leslie diagram with 100 hatchlings (H) and 40 adults (A) in year 1. Estimate the number of hatchlings and young in year 2.

A: 100 hatchlings, 40 adults
B: 100 hatchlings, 85 adults
C: 200 hatchlings, 40 adults
D: 200 hatchlings, 85 adults
E: None

Matrix identity

- Identity matrix: a special $n \times n$ matrix $I_{n}=I$ such that $A I=A$ for any $m \times n$ matrix and $I A=A$ for any $n \times m$ matrix.

$$
I_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right] \text { has 1's on diagonal and 0's elsewhere. }
$$

Matrix algebra

- $A(B C)=(A B) C$
- $A(B+C)=A B+A C$
- $(B+C) A=B A+C A$
- $A B \neq B A$ (in general)

Try it out

$\cdot\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]+\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]\right)$
$\cdot\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]-\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]\right)$

$$
\begin{aligned}
& \text { A: }\left[\begin{array}{ll}
3 & 5 \\
5 & 9
\end{array}\right] \\
& \text { B: }\left[\begin{array}{ll}
2 & 5 \\
5 & 8
\end{array}\right] \\
& \text { C: }\left[\begin{array}{cc}
5 & 11 \\
11 & 25
\end{array}\right] \\
& \text { D: }\left[\begin{array}{cc}
6 & 11 \\
11 & 26
\end{array}\right] \\
& \text { E: None }
\end{aligned}
$$

$A:\left[\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right]$
B: $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
$\mathrm{C}:\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
D: $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
E: None

