$$
\begin{gathered}
\text { Systems of linear } \\
\text { equations } \\
\text { Lecture 3b: 2023-01-23 }
\end{gathered}
$$

MAT A35 - Winter 2023 - UTSC

Prof. Yun William Yu

Rabbit population - reminder

[average fecundity of young average fecundity of adults survivability of young survivability of adults [number of adult rabbits

$$
=\left[\begin{array}{c}
\text { number of offspring of young }+ \text { number of offspring of adults } \\
\text { number of surviving young }+ \text { number of surviving adults }
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
\text { number of young rabbits the following year } \\
\text { number of adult rabbits the following year }
\end{array}\right]
$$

- Suppose you have a Leslie matrix $L=$ a population vector $p_{2}=\left[\begin{array}{c}230 \\ 59\end{array}\right]$ in Year 2. What was the population vector p_{1} in Year 1?

Matrix Equation to System of Equations

- Suppose you have a Leslie matrix $L=\left[\begin{array}{cc}2 & 3 \\ 0.5 & 0.9\end{array}\right]$ and a population vector $p_{2}=\left[\begin{array}{c}230 \\ 59\end{array}\right]$ in Year 2. What was the population vector p_{1} in Year 1?

$$
\begin{aligned}
& \Leftrightarrow \quad 2 x+3_{y}=230 \\
& \text {-) } 2 x+3.6 y=236 \\
& {\left[\begin{array}{cc}
2 & 3 \\
0.6 & 0.7
\end{array}\right]\left[\begin{array}{c}
100 \\
10
\end{array}\right]=\left[\begin{array}{c}
230 \\
59
\end{array}\right]} \\
& \left\{\begin{array}{l}
y=10 \\
x=100
\end{array}\right.
\end{aligned}
$$

Graphs of 2D linear equations

- Can visualize 2 -variable equations as lines.

$$
\begin{aligned}
& a x+b_{y}=c \\
& \Rightarrow y=\frac{c-a x}{b}=\frac{c}{b}-\frac{a}{b} x
\end{aligned}
$$

- Any point on the line is a solution to the equation.

$$
\begin{array}{ll}
x+2 y=3 & x=0, y=\frac{3}{2} \\
y=\frac{3}{2}-\frac{1}{2} x & x=1, y=1 \\
& x=2, y=\frac{1}{2}
\end{array}
$$

Graphs of 2D linear systems

- A solution to a system of 2 linear equations with 2 variables has to be a solution to both of equations -lie. it lies on both lines.

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2 y}=c_{2}
\end{aligned}
$$

- Three possibilities for number of solutions

1 solution

N. solutions

infinite solutes
(In)consistency and (in)dependence

- A system of equations is consistent if it has at least one solutions. Otherwise, it is inconsistent (no solutions).
- A system of equations is dependent if you can derive one of the equations from the other equations. Otherwise, the system is independent.
- An equation that can be derived from the other equations is also called dependent, and one that cannot is called independent.

$$
\begin{aligned}
& y=-\frac{1}{2} x \\
& y=x+1
\end{aligned}
$$

consistent f independent

$$
\begin{aligned}
& y=4 \\
& y=1
\end{aligned}
$$

indepulant

$$
\begin{aligned}
& 2 y=2 x+2,5 \\
& (y=x+1) \cdot 2
\end{aligned}
$$

Try it out

$\cdot\left\{\begin{array}{l}x+2 y=5 \\ x-2 y=1\end{array}\right.$
$\cdot\left\{\begin{array}{l}x+2 y=5 \\ x+2 y=1\end{array}\right.$
A: Consistent and independent
B: Inconsistent and independent
C: Consistent and dependent
D: Inconsistent and dependent E: None

Properties of systems of equations

- Each variable in a system of equations can be thought of as a degree of freedom. x, y, z x, y

- Each independent equation constrains the system and removes a degree of freedom.

z

Properties of systems of equations

- A system of n linear equations with n variables has exactly 1 solution if and only if the system is independent and consistent.

$$
\left\{\begin{array}{ll}
x+y=1 & 2 x=6 \\
x-y=5 & x=3
\end{array} \quad y=-2\right.
$$

- If $m>n$, then a system of m linear equations with n variables does not have a solution if all the equations are independent.

$$
\left\{\begin{array}{l}
x+y=1 \\
x-y=5 \\
2 x+y=0 \quad
\end{array}\right\} \quad x=3, y=-2
$$

- If $m<n$, then a system of m linear equations with n variables has infinitely many solutions if the system is independent and consistent. (of course, a system with at least 2 equations can be inconsistent)

Substitution method

- Solve for a variable in one equation in terms of the other variables, and then substitute it into all the other equations.
- Iterate until you know the value of one variable.
- Then plug that variable value into all of the equations and repeat the entire process with one fewer variable.

$$
\text { Ex. }\left\{\begin{array}{c}
\left\{\begin{array}{c}
3 x-2 y=1 \\
-x+y=1
\end{array}\right. \\
y=x+1 \\
3 x-2(x+1)=1 \\
3 x-2 x-2=1 \\
x=3 \\
y=4
\end{array}\right.
$$

Elimination Method

- Transform a system into an "equivalent" system with the same solutions using $\quad\left\{\begin{array}{l}x+y=1 \\ x-y=0\end{array} \Leftrightarrow\left\{\begin{array}{l}x-y=0 \\ x+y=1\end{array}\right.\right.$ three types of operations:
- Change (permute) the order of the equations. $\quad\left\{\begin{array}{l}x+y=1 \\ x-y=0\end{array} \Leftrightarrow\left\{\begin{array}{l}2 x+2 y=2 \\ x-y=0\end{array}\right.\right.$ non-zero constant.
- Add a multiple of one equation (A) to another (B). $\left\{\begin{array}{l}x+y=1 \\ x-y=0\end{array} \Leftrightarrow\left\{\begin{array}{l}x+y=1 \\ z x=1\end{array}\right.\right.$ ($B \leftarrow c A+B$)
- Goal is to eliminate variables
- Can then use "backsubstitution" to solve.
- Can encode as an "augmented matrix"

Example $\left[\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ x\end{array}\right]$

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 x-2 y=1 \\
x-y=-1
\end{array} \quad \begin{array}{l}
R_{2}
\end{array}\right\}\left[\begin{array}{ll|l}
3 & -2 & 1 \\
1 & -1 & -1
\end{array}\right] \\
& \left\{\begin{array}{l}
x-y=-1 \\
3 x-2 y=1
\end{array} e^{R_{2} \in R_{2}-3 R_{1}}\left[\begin{array}{ll|l}
1 & -1 & -1 \\
3 & -2 & 1
\end{array}\right] \begin{array}{l}
-3 \\
t+3
\end{array}\right. \\
& \left\{\begin{aligned}
x-y & =-1 \\
y & =4 J_{\text {bach-sub }}
\end{aligned}\right. \\
& \left\{\begin{array}{lll}
x=3 & R_{1} \in R_{1}+R_{2} \\
y=4 &
\end{array}\right\}\left[\begin{array}{ll|l}
1 & 0 & 3 \\
0 & 1 & 4
\end{array}\right]
\end{aligned}
$$

Elementary row operations

- Elementary row operations
- Swap: Any row can be switched with any other row
- Scale: Any row can be multiplied by a non-zero constant
- Pivot: A multiple of one row can be added to another row
- If two matrices can be converted to one another via elementary row operations, then they are rowequivalent.

$$
\left[\begin{array}{cc|c}
3 & -2 & 1 \\
-1 & 1 & 1
\end{array}\right] \longleftrightarrow\left[\begin{array}{ll|l}
1 & 0 & 3 \\
0 & 1 & 4
\end{array}\right]
$$

(Reduced) row-echelon form

- A matrix is in row-echelon form if:
- If a row is not all 0 's, then the first nonzero entry is a 1.
- The leading 1 in a row is to the right of the leading one in the row above.
- Every row with all 0's is at the bottom of the matrix
- A matrix is in reduced row-echelon form if in addition:
- Each column containing a leading 1 in a row has all other entries 0 .

$x+2 y+3 z=1$
$z=0$

A: Row-echelon form
B : Reduced row-echelon form
C: Both A \& B
E: None

Gauss-Jordan elimination

- Gaussian elimination is using elementary row operations to convert a matrix to row echelon form.
- Work from left to right. Start by using swaps, scales, and pivots to convert the leftmost nonzero column to having a 1 as close to the top left as possible, and 0's everywhere else in the column.
- Then iteratively repeat on the submatrix below and to the right of that 1. (i.e. freeze that row; don't do any more row operations to it)
- All zero rows can be swapped to the bottom and ignored.
- An all zero row except with a nonzero right augmented term means that the systems is inconsistent.
- Gauss-Jordan elimination is using elementary row operations to convert a matrix to reduced row echelon form.
- Start with a Gaussian elimination to get to row echelon form.
- For the bottom-right 1, use pivots to zero out the entries above it.
- Iteratively repeat on the submatrix above and to the right of that 1 until you get all the way to the top.

Example

$$
\begin{aligned}
& x \quad+z=2 \\
& 2 y+2 z=6 \\
& -2 x+2 y=23 \\
& \left\{\begin{array}{l}
x \quad z=2 \\
y+z=3
\end{array}\right. \\
& {\left[\begin{array}{ccc|c}
1 & 0 & 1 & 2 \\
0 & 2 & 2 & 6 \\
-2 & 2 & 0 & 2
\end{array}\right]<R_{3} \leftarrow R_{3}+2 R_{1}} \\
& \left.\left[\begin{array}{lll|l}
1 & 0 & 1 & 2 \\
0 & 2 & 2 & 6 \\
0 & 2 & 2 & 4
\end{array}\right] \begin{array}{lll}
1 & 0 & 1
\end{array} 22\right] R_{2} \in \frac{1}{2} R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \text { equations, } \\
& 3 \text { variates, } \\
& \text { infinitely many } \\
& \text { solutions } \\
& \text { inconsistat } \\
& \text { no saluting }
\end{aligned}
$$

Example

Try it out

- Suppose you have a Leslie matrix $L=$ a population vector $p_{2}=$ $\left[\begin{array}{c}160 \\ 68\end{array}\right]$ in Year 2, many adults were there in Year 1?
$\left[\begin{array}{cc}1 & 3 \\ 0.5 & 0.9\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 6 & 8\end{array}\right]$

$$
\begin{aligned}
& x+3 y=160 \\
& 0.5 x+0.9 y=68 \\
& \text { E: None }
\end{aligned}
$$

