# What is a basis? Lecture 4b: 2023-01-30 

MAT A35 - Winter 2023 - UTSC Prof. Yun William Yu



## Specifying map coordinates

- On a 2-dimensional map, to specify a location, we need an origin point, two (independent) basic directions, and two coordinates.

$$
=2 v_{1}+v_{2}
$$




## Independence of directions

- If we don't have enough basic directions (e.g. only one in 2D) or if the two basic directions chosen are not independent, then we cannot specify the location of any point (i.e. we do not have a basis)



Standard basis vectors of $\mathbb{R}^{n}$

- The standard basis of $\mathbb{R}^{n}$ is $e_{1}, \ldots, e_{n}$, where $e_{i}$ is the vector with all 0 's except a 1 in the $i$ th entry.
- Any vector can be written as a linear combination of $e_{i}$ 's.

$$
\begin{aligned}
& \mathbb{R}^{3}: \quad e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{l}
x^{n} \\
y \\
z
\end{array}\right] x\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] } \\
& {\left[\begin{array}{c}
5 \\
2 \\
-1
\end{array}\right]=5 e_{1}+2 e_{2}-e_{3} }
\end{aligned}
$$

## Other sets of basis vectors of $\mathbb{R}^{n}$

- A set of $v_{1}, \ldots, v_{n}$ is a basis of $\mathbb{R}^{n}$ if every vector $w \in$ $\mathbb{R}^{n}$ can be written as a linear combination $w=$ $c_{1} v_{1}+\cdots+c_{n} v_{n}$.
- Any linearly independent set of $n$ vectors in $\mathbb{R}^{n}$ is a basis of $\mathbb{R}^{n}$. A set of vectors is linearly independent if none of the vectors can be written as a linear combination of the other vectors.
Ex. $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$ is a bars's of $\mathbb{R}^{2}$
Suppose $\left[\begin{array}{l}1 \\ 1\end{array}\right]=c\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
Then $+1-\mathrm{c}=1$
contradiction
$\Rightarrow\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ are linearly independent
Note $\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{x+y}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]+\frac{x-y}{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]\left[\begin{array}{l}2 \\ 4\end{array}\right]=3\left[\begin{array}{l}1 \\ 1\end{array}\right]-\left[\begin{array}{c}1 \\ -1\end{array}\right]$

Test for linear independence

- The vectors $v_{1}, \ldots, v_{n}$ are linearly independent if $c_{1} v_{1}+\cdots c_{n} v_{n}=0$ implies that $c_{1}=\cdots=c_{n}=0$.
- Note: if you have $n$ vectors in a space that is $<n$ dimensions, then they are not linearly independent.
E. $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2\end{array}\right] \quad c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}2 \\ -2\end{array}\right]=0$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & 2 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& R_{2} \in R_{1}-R_{2}\left(\left[\begin{array}{cc|c}
1 & 2 & 0 \\
1 & -2 & 0
\end{array}\right] \quad R_{2} \in \frac{R_{2}}{4}\right. \\
& \hdashline\left[\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 4 & 0
\end{array}\right] \quad\left[\begin{array}{ll|l}
1 & 2 & 0 \\
R_{1} \in R_{2}- & 1 & 0 \\
2 R_{2}
\end{array}\right] \\
& {\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]} \\
& c_{1}=0 \\
& c_{2}=0
\end{aligned}
$$

Example

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad c_{1}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{1}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\left\{\begin{array}{l}
c_{1}+c_{2}=0 \\
2 c_{1}+c_{3}=0 \\
c_{2}=-c_{1} \\
c_{3}=-2 c_{1}
\end{array} \Rightarrow\left[\begin{array}{c}
c_{1} \\
-c_{1} \\
-2 c_{1}
\end{array}\right] \rightarrow\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right]\right.
\end{gathered}
$$

If $c_{1}=1, c_{2}=-1, c_{3}=-2$, then we jet 0 . So NOT lin. ind.

## Try it out: are the following a basis?

$\cdot\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}-2 \\ -2\end{array}\right] \quad$ No
$\cdot\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}-5 \\ -4\end{array}\right] \quad$ Yes
$\cdot\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}-5 \\ -4\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$
No
$\cdot\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
No
A: Yes
B: No
C: Maybe
D: ???
E: None of the above

Diagonal matrices scale standard basis

- Scaling operations: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{c}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}x \\ 2 y \\ 3 z\end{array}\right]$
- An $n \times n$ diagonal matrix $A$ with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ scales the standard basis vectors $e_{1}, \ldots, e_{n}$, where $e_{i}$ is a vector with 0 's everywhere except a 1 in position $i$ by $A e_{i}=\lambda_{i} e_{i}$.


## Matrices transform vectors

- The columns of a matrix $A$ tell you where the matrix maps $A e_{i}$ to, where $e_{i}$ are the standard basis vectors, but repeated application of $A$ is nontrivial.


## Do non-diagonal matrices scale?

$\cdot\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x+y \\ x+y\end{array}\right]$

## Eigenvalues and Eigenvectors

- Let $A$ be an $n \times n$ square matrix, and let $v$ be a nonzero vector of length $n$. Then if $A v=\lambda v$ for some number $\lambda$, then $v$ is an eigenvector of $A$ with corresponding eigenvalue $\lambda$. Together, they are also sometimes known as an eigenpair $(\lambda, v)$.
- An eigenvector $v$ is a vector that gets scaled by a constant multiple $\lambda$ (called an eigenvalue) when multiplied by $A$.
- If $v$ is an eigenvector for the eigenvalue $\lambda$, then so is $k v$, for any $k \neq 0$.

