Eigenvalues, eigenvectors, and eigenbases

Lecture 4c: 2023-02-02

MAT A35 - Winter 2023 - UTSC
Prof. Yun William Yu

Eigenvalues and Eigenvectors

- Let A be an $n \times n$ square matrix, and let v be a nonzero vector of length n. Then if $A v=\lambda v$ for some number λ, then v is an eigenvector of A with corresponding eigenvalue λ. Together, they are also sometimes known as an eigenpair (λ, v).
- An eigenvector v is a vector that gets scaled by a constant multiple λ (called an eigenvalue) when multiplied by A.
- If v is an eigenvector for the eigenvalue λ, then so is $k v$, for any $k \neq 0$.

Try it out

- Let $A=\left[\begin{array}{ccc}-9 & 6 & 20 \\ 2 & 2 & -4 \\ -6 & 3 & 13\end{array}\right]$.

$$
\begin{aligned}
& \mathrm{A}:\left[\begin{array}{lll}
2 & -6 & 5
\end{array}\right]^{T} \\
& \mathrm{~B}:\left[\begin{array}{lll}
6 & 1 & 3
\end{array}\right]^{T} \\
& \mathrm{C}:\left[\begin{array}{lll}
12 & 2 & 6
\end{array}\right]^{T} \\
& \mathrm{D}: \text { All of the above } \\
& \mathrm{E}: \text { None of the above }
\end{aligned}
$$

- Which of the following are eigenvectors of A ?

Finding eigenvalues of a matrix

- Let A be a $n \times n$ matrix. If λ is an eigenvalue of A, then $\operatorname{det}(A-\lambda I)=0$.

Example

Try it out

- $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$

Find the eigenvalues:
A: 1
B: 2
C: 3
D: All of the above
E : None of the above

- $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

Find the eigenvalues:
A: 1
B: 2
C: 3
D: All of the above
E : None of the above

Try it out

 - $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$Find the eigenvalues:
A: 1
B: 2
C: 3
D: All of the above
E : None of the above

- Triangular matrices have their eigenvalues on the diagonal.

Finding eigenvectors of a matrix

- $A v=\lambda v$, or alternately, $(A-\lambda I) v=0$

Example

Example (continued)

Try it out

- $A=\left[\begin{array}{lll}1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3\end{array}\right]$. What is the eigenvector
corresponding to the eigenvalue $\lambda=3$?

Find the corresponding eigenvector:
A: $[0,0,1]^{T}$
B: $[0,5,1]^{T}$
C: $[13,5,1]^{T}$
D: All of the above
E : None of the above

Interpreting eigenvectors and

 eigenvalues- If we have n distinct eigenpairs of an $n \times n$ matrix A, we can interpret the "action" of A by what it does to the eigenvectors.

Interpreting eigenvectors and

 eigenvalues- If we have n distinct eigenpairs of an $n \times n$ matrix A, we can interpret the "action" of A by what it does to the eigenvectors.

Eigenbasis of a square matrix

- If an $n \times n$ matrix A has n linearly independent eigenvectors, those eigenvectors form an eigenbasis.
- Note that eigenvectors corresponding to different eigenvalues are necessarily linearly independent.
- Also, can find all linearly independent eigenvectors corresponding to an eigenvalue by setting each of the free variables after Gaussian elimination.

Try it out: do the following have an eigenbasis?
 A: Yes
 B: No
 C: Maybe
 D: ???
 E: None of the above

- $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
- $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
- $A=\left[\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right]$
- $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$

Population Growth Rates

- Suppose that the Leslie matrix G for a population has eigenvectors v_{1}, \ldots, v_{n} with associated eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ respectively. If the initial population vector is $p=a_{1} v_{1}+\cdots+a_{n} v_{n}$, then the population after t time periods is

$$
a_{1} \lambda_{1}^{t} v_{1}+\cdots+a_{n} \lambda_{n}^{t} v_{n}
$$

Example

- Consider an age-structured population model for birds where you have divided the group into young and old. Each old has only 1 hatchling each year, but survives with probability 1. Each young has 1.5 new hatchlings each year, but survives with only probability 0.5 to become old next year. If $p_{0}=[6,0]^{T}$, what is the population after 10 years?

Eigendecomposition of $L=\left[\begin{array}{ll}1.5 & 1 \\ 0.5 & 1\end{array}\right]$

Rewrite $\left[\begin{array}{l}6 \\ 0\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Solve $\mathrm{p}_{10}=L^{10} p_{0}$ using eigenvectors

Example

- What if the initial population were $p_{0}=[3,0]^{T}$?

Try it out

- What if the initial population size was $p_{0}=[0,6]^{T}$? Which of the following answers is the closest to the population vector after 10 years?
- Recall $L=\left[\begin{array}{ll}1.5 & 1 \\ 0.5 & 1\end{array}\right], \lambda_{1}=2, v_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \lambda_{2}=0.5, v_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& \text { A: }[1000,500]^{T} \\
& \text { B: }[2000,1000]^{T} \\
& \text { C: }[4000,2000]^{T} \\
& \text { D: }[8000,4000]^{T} \\
& \text { E: }[16000,8000]^{T}
\end{aligned}
$$

- Note that because exponentials grow super-fast, the long-term growth rate is dominated by the largest eigenvalue.

Try it out

- Consider a population with three life stages, newborn, juvenile, and adult, with the Leslie matrix

$$
L=\left[\begin{array}{ccc}
0 & 6 & 8 \\
0.5 & 0 & 0 \\
0 & 0.5 & 0
\end{array}\right]
$$

At long time scales, what is the ratio of newborns to adults?

```
A: 2 to 1
B: 4 to 1
C: }8\mathrm{ to 1
D: 16 to 1
E:None
```


Advanced topic: complex eigenpairs

- Note that this will NOT be on Quiz 2.

- We've talked a lot about scaling by a constant multiple. But what happens if the numbers aren't real?

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]} \\
& \left|\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right|=\lambda^{2}+1=0 \quad \Rightarrow \lambda^{2}=-1, \lambda= \pm i
\end{aligned}
$$

- It turns out that imaginary eigenvalues correspond to rotations.
- Complex eigenvalues can be a combination of scaling and rotation.

