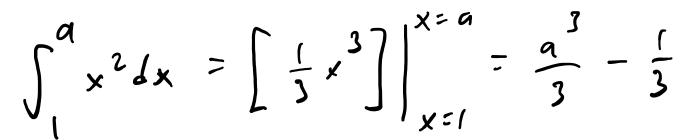
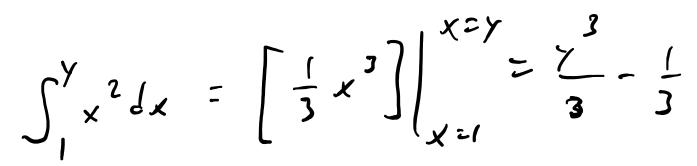
Multivariable integration Lecture 5c: 2023-02-069

MAT A35 – Winter 2023 – UTSC Prof. Yun William Yu


Double definite integrals


$$\int_{a}^{b} f(x) dx = \int_{x=a}^{x=b} f(x) dx = ANS$$

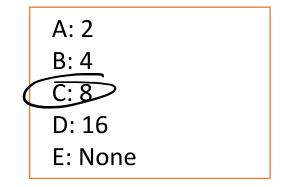
initial of integration variable we integrate over

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy = \int_{y=a}^{y=b} \int_{x=c}^{x=d} f(x, y) dx dy$$
int over x
int over y

Definite integration removes the variable

$$\int_{1}^{2} x^{2} dx = \left[\frac{1}{3}x^{3}\right] \Big|_{x=1}^{x=1} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}$$

Multiple definite integrals example


$$\int_{y=a}^{y=b} \int_{x=c}^{x=d} f(x,y) \, dx \, dy$$

- First integrate the inside integral, assuming all other variables are constant.
 - $\int_{x=c}^{x=d} f(x, y) dx = g(y)$ (because we got rid of the "x")
- Then integrate the outside variable, to get an answer

•
$$\int_{y=a}^{y=b} g(y) \, dy = \text{answer}$$

Ex: $\int_{0}^{2} \int_{-1}^{2} 10xy^{2}dx dy$ $\int_{-1}^{2} |0 \times y^{2} dx = \left[5 \times {}^{2} y^{2} \right] \Big|_{X=-1}^{X=2} = 20y^{2} - 5y^{2}$ $= 15y^{2}$ $= 15y^{2}$ $\int_{-\infty}^{2} |S_{y}^{2} dy = \left[S_{y}^{3} \right] \Big|_{y=0}^{y=0} = \frac{40}{-1}$

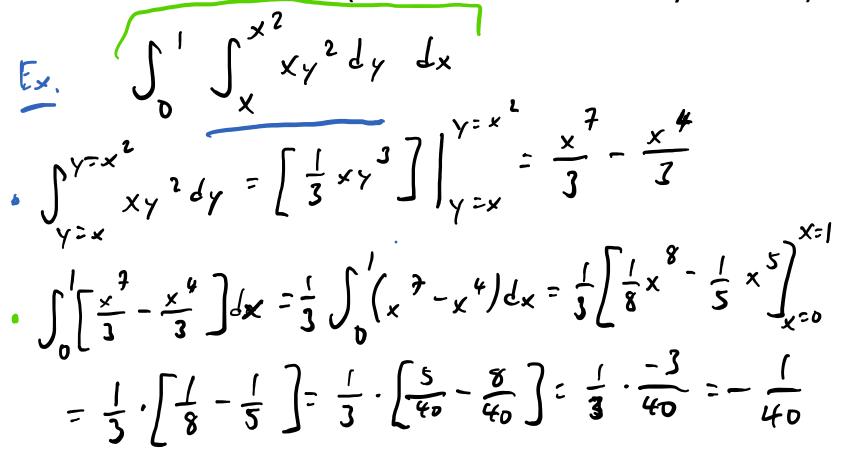
Try it out
•
$$\int_{0}^{2} \int_{-1}^{1} 2y dx dy$$

• $\int_{-1}^{1} Z_{y} dx = [2x_{y}]|_{x=-1}^{x=1} = 2y - (-2y) = 4y$
• $\int_{0}^{2} 4y dy = [2y^{2}]|_{y=0}^{y=2} = 8$

Switching order of integrals?

• Last slide: $\int_{0}^{2} \int_{-1}^{1} 2y dx dy = 8$

• What about: $\int_{-1}^{1} \int_{0}^{2} 2y dy dx$


$$\int_{0}^{2} 2y \, dy = y^{2} \int_{0}^{2} = 4$$

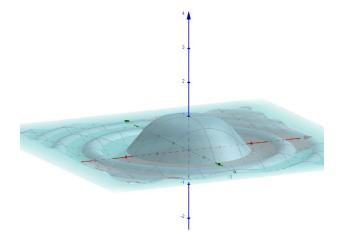
$$\int_{0}^{1} 4 \, dx = 4 \times \int_{-1}^{1} = 4 - (-4) = 8$$

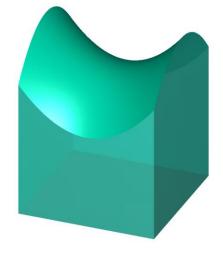
• Often, we can switch the order of integration and get the same answer, but this is not always true.

Variables in the limits of integration

 We can use the outside integral variable in the limits of the inside variable (but not the other way around).

Try it out


• $\int_{0}^{2} \int_{1}^{y^{2}} 2x dx dy$, $x = \frac{1}{x} \int_{x=1}^{y^{2}} 2x dx = \frac{1}{x} \int_{x=1}^{y^{2}} \frac{$ $\int_{0}^{2} (y^{4} - i) dy = \left[\frac{i}{5}y^{5} - y\right] \Big|_{0}^{2} = \left[\frac{32}{5} - 2\right] - \left[0 - 0\right]$ $= \frac{32}{5} - 2 = \frac{22}{5}$


B: $\frac{22}{5}$ 33 E: None

Geometric interpretation

• Multivariable functions $f: \mathbb{R}^2 \to \mathbb{R}$ can be thought of as surfaces.

 Double integrals correspond to the volume under the surface for a particular region

https://en.wikipedia.org/wiki/Multiple_integral