Introduction to regression analysis
 Lecture 6a: 2023-02-13
 MAT A35 - Winter 2023 - UTSC
 Prof. Yun William Yu

Height of the CN tower

- On June 15, you measure that the CN tower is 21,785 inches tall.
- How tall will the CN tower be on July 15?

A: 10892.5 inches
B: 21785 inches
C: 43570 inches
D: ???
E : None of the above

Growth of a willow tree

- On June 15, you measure that a weeping willow measures 424 inches tall.
- How tall will the tree be on July 15?

A: 212 inches
B: 424 inches
C: 848 inches
D: ???

E : None of the above

Two data points

- On May 15, you measured that a weeping willow measures 420 inches tall.
- On June 15, you measured that the same weeping willow is 424 inches tall.
- How tall is the weeping willow on July 15?

A: 420 inches
B: 424 inches
C: 428 inches
D: ???
E: None of the above

Two data points

- On May 15, you measure that the CN tower is 21,786 inches tall.
- On June 15, you measure that the CN tower is 21,785 inches tall.
- How tall will the CN tower be on July 15 ?

A: 21,784 inches
B: 21,785 inches
C: 21,786 inches
D: ???
E: None of the above

Model assumptions

- Model assumption: the CN tower should stay a roughly constant height, subject to experimental errors.

- Model assumption: a willow tree grows roughly linearly, subject to experimental errors.

One-parameter model

- Model assumption: the CN tower should stay a constant height, subject to experimental errors.
- $h(t)=b$, where b is a constant.

$$
\begin{array}{ll}
h(\text { May })=21786 & \Rightarrow b=21786 \\
h(\text { June })=21785 & \Rightarrow b=21785
\end{array}
$$

$$
21786 \neq 21785
$$

Two-parameter model

- Model assumption: a willow tree grows roughly linearly, subject to experimental errors.
- $h(t)=\widetilde{m t+b}$, where m and b are constants, and t is time in months

$$
\begin{aligned}
& M_{\text {My }}=5 \quad \text { June }=6 \\
& h(5)=420=5 m+b \\
& h(6): 424=6 m+b \\
& \Rightarrow m=4 \quad b=400
\end{aligned}
$$

Prediction: $h(J u l y)$

$$
=h(7)=428 \text { inches }
$$

Three data points

- On April 15, you measured a height of 417 inches tall.
- On May 15, you measured a height of 420 inches tall.
- On June 15, you measured that the same weeping willow is 424 inches tall.
- How tall is the weeping willow on July 15?

A: 424 inches
B: 427 inches
C: 428 inches
D: ???
E : None of the above

The "best"-fit model $h(t)=b$

- A model is good if it predicts future data accurately.
- Since the model cannot see into the future, the model is built to accurately explain ("fit" to) existing data.

Errors in both directions matter

- We want to minimize average errors, but pos/neg errors are both bad.
- Can use either absolute value or squaring before summing errors.

"Best" estimators depend on error metric

- Mean absolute error
- Given data points $h_{1}, h_{2}, \ldots, h_{n}$ and a guessed height b,

$$
\operatorname{MAE}(b)=\frac{1}{n} \sum_{i=1}^{n^{n}}\left|h_{i}-b\right|
$$

- Optimal guess is the median (the middle element if odd, or the sum of the two middle elements divided by two if even)
- Mean squared error
- Given data points $h_{1}, h_{2}, \ldots, h_{n}$ and a guessed height b,

$$
\operatorname{MSE}(b)=\frac{1}{n} \sum_{i=1}^{n}\left(h_{i}-b\right)^{2}
$$

- Optimal guess is the mean $=\frac{1}{\mathrm{n}} \sum_{i=1}^{n} h_{i}$

Two-parameter model fitting

- $h(t)=m t+b$, where m and b are constants, and t is time in months
- What are the optimal values of m and b ?

Error of linear model: $f(t)=m t+b$

- Mean absolute error
- Given data points $h_{1}, h_{2}, \ldots, h_{n}$ at times t_{1}, \ldots, t_{n} and parameters (m, b)
$\operatorname{MAE}(m, b)=\frac{1}{n} \sum_{i=1}^{n}\left|h_{i}-f\left(t_{i}\right)\right|=\frac{1}{n} \sum_{i=1}^{n}\left|h_{i}-\left(m t_{i}+b\right)\right|$
- Computing mean absolute error is hard because absolute value is not differentiable. (See Linear Programming)

- Mean squared error

- Given data points $h_{1}, h_{2}, \ldots, h_{n}$ at times t_{1}, \ldots, t_{n} and parameters (m, b)

$$
\operatorname{MSE}(m, b)=\frac{1}{n} \sum_{i=1}^{n}\left(h_{i}-f\left(t_{i}\right)\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(h_{i}-\left(m t_{i}+b\right)\right)^{2}
$$

- We can find the minimum of this function using tools from calculus.

Best-fit line for willow tree

Derivation for simple example

$$
\begin{gathered}
S(m, b)=\frac{1}{n} \sum_{i=1}^{n}\left(h_{i}-\left(m t_{i}+b\right)\right)^{2} \\
=\frac{1}{6}\left[(404-m-b)^{2}+(407-2 m-b)^{2}\right. \\
\quad+(412-3 m-b)^{2} f(417-4 m-b)^{2} \\
\left.\quad+(420-5 m-b)^{2} f(424-6 m-b)^{2}\right]
\end{gathered}
$$

$$
\left.\begin{array}{l}
\frac{\partial S}{\partial m}=0 \\
\frac{\partial S}{\partial b}=0
\end{array}\right\} \begin{array}{lll}
& & \\
\text { find } & \text { crit } & \text { pt. } \\
\text { in } & \text { tam } & \text { of } \\
& (m, b)
\end{array}
$$

Month	Height of willow tree
1 - January	404
2 - February	407
3 - March	412
4 - April	417
5 - May	420
6 - June	424

Find critical points \& check the Hessian

- Set $\frac{\partial S}{\partial m}=0$ and $\frac{\partial S}{\partial b}=0$.
- End up with $m \approx 4.11$ and $b=399.6$
- Then need to check that the eigenvalues of the Hessian are both positive:
$\cdot\left[\begin{array}{ll}\frac{\partial^{2} s}{\partial m^{2}} & \frac{\partial^{2} s}{\partial \partial \partial m} \\ \frac{\partial^{2} s}{\partial \partial \partial s} & \frac{\partial^{2} s}{\partial b^{2}}\end{array}\right]$
has positive eigenvalues at $(4.11,399.6)$
- Therefore, the model $f(x)=4.11 x+399.6$ is the bestfit line

Linear model error

- Given measurements $y_{1}, y_{2}, \ldots, y_{n}$ at values x_{1}, \ldots, x_{n}, a linear model is a function $f(x)=m x+b$, with parameters m and b where $y_{i} \approx f\left(x_{i}\right)$ with some error.
- Ex: the x-axis coordinates might be time, and the y-axis might be height of a tree as a function of time.
- The Mean Squared Error of the model is given by

$$
\begin{aligned}
& \operatorname{MSE}(m, b)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(m x_{i}+b\right)\right)^{2}
\end{aligned}
$$

- We want to find the model parameters that give the minimum mean squared error, so consider the function $S(m, b)=\operatorname{MSE}(m, b)$. We want to find the minimum of the function $S(m, b)$.

Theorem (linear models)

- Suppose we are given measurements $y_{1}, y_{2}, \ldots, y_{n}$ at values x_{1}, \ldots, x_{n}. Let $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ be the respective averages.
- Then the linear model $f(x)=m x+b$ that minimizes the mean squared error is given by:

$$
m=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

$$
b=\bar{y}-m \bar{x}
$$

- Proof involves using the partial derivatives to find the minimum of the function
$S(m, s)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(m x_{i}+b\right)\right)^{2}$.

