Introduction to regression analysis Lecture 6a: 2023-02-13

MAT A35 – Winter 2023 – UTSC Prof. Yun William Yu

Height of the CN tower

- On June 15, you measure that the CN tower is 21,785 inches tall.
- How tall will the CN tower be on July 15?

A: 10892.5 inches B: 21785 inches C: 43570 inches D: ??? E: None of the above

Growth of a willow tree

- On June 15, you measure that a weeping willow measures 424 inches tall.
- How tall will the tree be on July 15?

- A: 212 inches
- B: 424 inches
- C: 848 inches
- D: ???
- E: None of the above

Two data points

- On May 15, you measured that a weeping willow measures 420 inches tall.
- On June 15, you measured that the same weeping willow is 424 inches tall.
- How tall is the weeping willow on July 15?
 - A: 420 inches
 - B: 424 inches
 - C: 428 inches
 - D: ???
 - E: None of the above

Two data points

- On May 15, you measure that the CN tower is 21,786 inches tall.
- On June 15, you measure that the CN tower is 21,785 inches tall.
- How tall will the CN tower be on July 15?
 - A: 21,784 inches B: 21,785 inches C: 21,786 inches
 - C: 21,786 inches
 - D: ???
 - E: None of the above

Model assumptions

 Model assumption: the CN tower should stay a roughly constant height, subject to experimental errors.

 Model assumption: a willow tree grows roughly linearly, subject to experimental errors.

One-parameter model

- Model assumption: the CN tower should stay a constant height, subject to experimental errors.
- h(t) = b, where b is a constant.

h (May) = 21786 => 6= 21786 h (June) = 21785 => 6= 21785

21786 7 21785

Two-parameter model

- Model assumption: a willow tree grows roughly linearly, subject to experimental errors.
- h(t) = mt + b, where m and b are constants, and t is time in months

$$M_{-y} = 5 \qquad J_{une} = 6$$

$$h(5) = 420 = 5m + 6$$

$$h(6) = 424 = 6m + 6$$

$$= m = 4 \qquad b = 400$$

Prediction:
$$h(T_{1}/r_{4}) = -h(7) = 428$$

inches

Three data points

- On April 15, you measured a height of 417 inches tall.
- On May 15, you measured a height of 420 inches tall.
- On June 15, you measured that the same weeping willow is 424 inches tall.
- How tall is the weeping willow on July 15?

A: 424 inches B: 427 inches C: 428 inches D: ??? E: None of the above

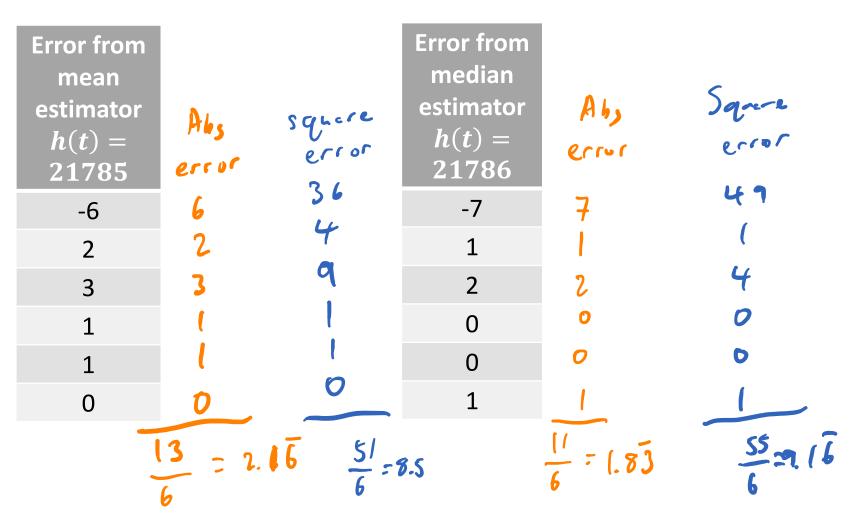
The "best"-fit model h(t) - b

- A model is good if it predicts future data accurately.
- Since the model cannot see into the future, the model is built to accurately explain ("fit" to) existing data.

		[M == 21785	Median = 2(186
Date	Height of CN tower	Error h(E)= 2000	Error h(t) - 21785	Median = 21786 Error
January	21,779	1771	-6	
February	21,787	1787	L	2
March	21,788	1788	3	0
April	21,786	1786		
May	21,786	1786		0
June	21,785	1785	D	- (
July	???			

Errors in both directions matter

- We want to minimize average errors, but pos/neg errors are both bad.
- Can use either absolute value or squaring before summing errors.



"Best" estimators depend on error metric

- Mean absolute error
 - Given data points h_1, h_2, \dots, h_n and a guessed height b,

$$MAE(b) = \frac{1}{n} \sum_{i=1}^{n} |h_i - b|$$

- Optimal guess is the median (the middle element if odd, or the sum of the two middle elements divided by two if even)
- Mean squared error
 - Given data points h_1, h_2, \dots, h_n and a guessed height b,

$$MSE(b) = \frac{1}{n} \sum_{i=1}^{N} (h_i - b)^2$$

• Optimal guess is the mean = $\frac{1}{n}\sum_{i=1}^{n}h_i$

Two-parameter model fitting

- h(t) = mt + b, where m and b are constants, and t is time in months
- What are the optimal values of *m* and *b*?

	Month	Height of willow	
		tree	430 - error
١	January	404	420 +
2	February	407	
3	March	412	410 - 21175
4	April	417	400 -
5	May	420	ž.
6	June	424	
7	July	???	1234567

Error of linear model: f(t) = mt + b

- Mean absolute error
 - Given data points h₁, h₂, ..., h_n at times t₁, ..., t_n and parameters (m, b)

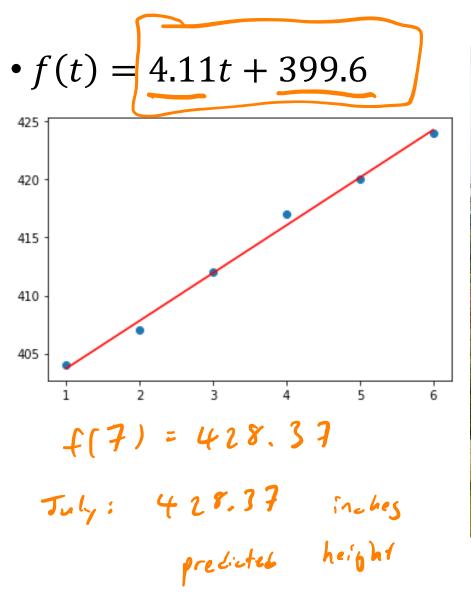
$$MAE(m,b) = \frac{1}{n} \sum_{i=1}^{n} |h_i - f(t_i)| = \frac{1}{n} \sum_{i=1}^{n} |h_i - (mt_i + b)|$$

- Computing mean absolute error is hard because absolute value is not differentiable. (See Linear Programming)
- Mean squared error
 - Given data points h₁, h₂, ..., h_n at times t₁, ..., t_n and parameters (m, b)

$$MSE(m,b) = \frac{1}{n} \sum_{i=1}^{n} (h_i - f(t_i))^2 = \frac{1}{n} \sum_{i=1}^{n} (h_i - (mt_i + b))^2$$

• We can find the minimum of this function using tools from calculus.

Best-fit line for willow tree



Derivation for simple example

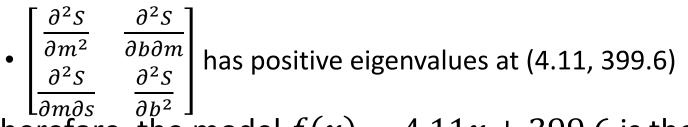
$$S(m,b) = \frac{1}{n} \sum_{i=1}^{n} (h_i - (mt_i + b))^2$$

= $\frac{1}{b} [(404 - m - b)^2 + (407 - 2m - b)^2 + (417 - 4m - b)^2 + (417 - 4m - b)^2 + (417 - 4m - b)^2 + (410 - 5m - b)^2 + (417 - 4m - b)^2]$

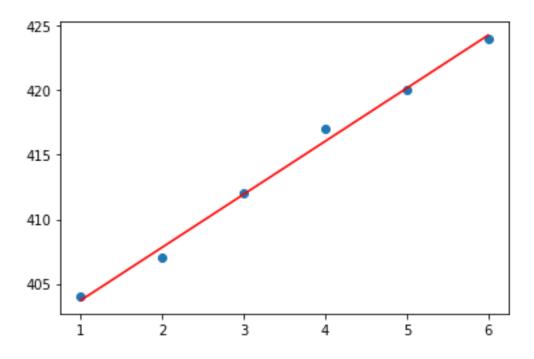
Month	Height of willow tree
1 – January	404
2 – February	407
3 – March	412
4 – April	417
5 – May	420
6 – June	424

Find critical points & check the Hessian

- Set $\frac{\partial S}{\partial m} = 0$ and $\frac{\partial S}{\partial b} = 0$. End up with $m \approx 4.11$ and b = 399.6
- Then need to check that the eigenvalues of the Hessian are both positive:



• Therefore, the model f(x) = 4.11x + 399.6 is the bestfit line



Linear model error

- Given measurements $y_1, y_2, ..., y_n$ at values $x_1, ..., x_n$, a linear model is a function f(x) = mx + b, with parameters m and b where $y_i \approx f(x_i)$ with some error.
 - Ex: the x-axis coordinates might be time, and the y-axis might be height of a tree as a function of time.
- The Mean Squared Error of the model is given by

$$MSE(m,b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$

• We want to find the model parameters that give the minimum mean squared error, so consider the function S(m, b) = MSE(m, b). We want to find the minimum of the function S(m, b).

Theorem (linear models)

- Suppose we are given measurements $y_1, y_2, ..., y_n$ at values $x_1, ..., x_n$. Let $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$ and $\overline{y} = \frac{1}{n} \sum_{i=1}^n y_i$ be the respective averages.
- Then the linear model f(x) = mx + b that minimizes the mean squared error is given by: $m = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$

$$b = \bar{y} - m\bar{x}$$

 Proof involves using the partial derivatives to find the minimum of the function

$$S(m,s) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (mx_i + b))^2.$$