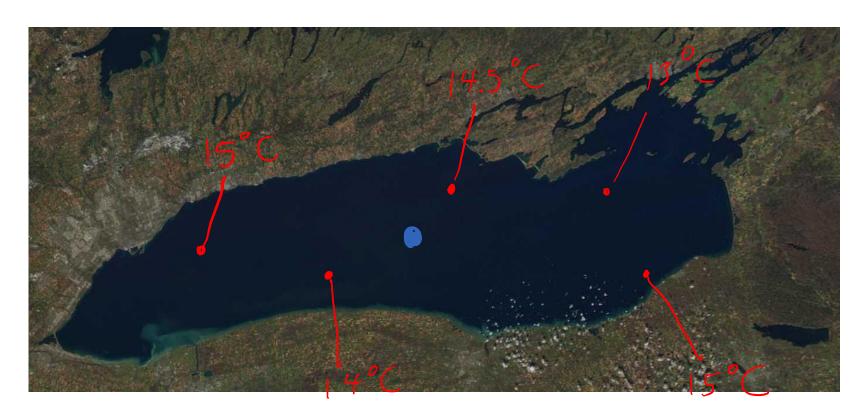
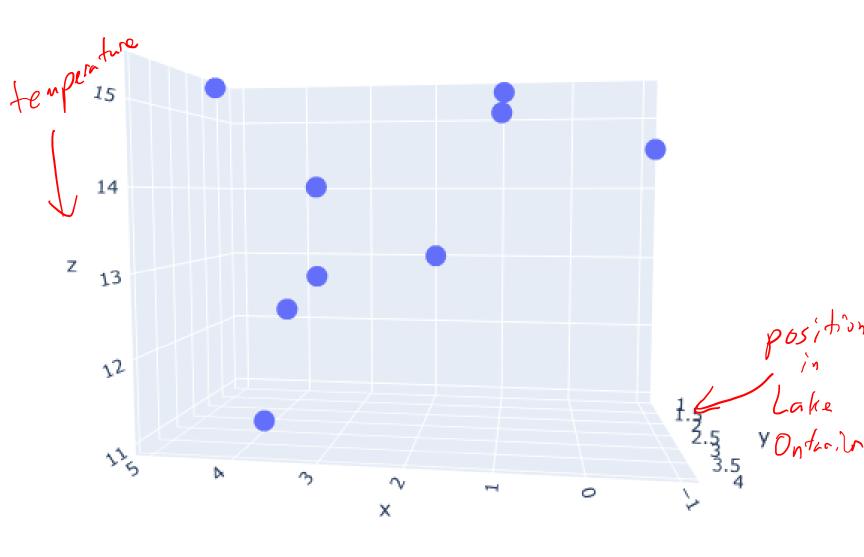

Multilinear and Nonlinear Regression Lecture 6c: 2023-02-16

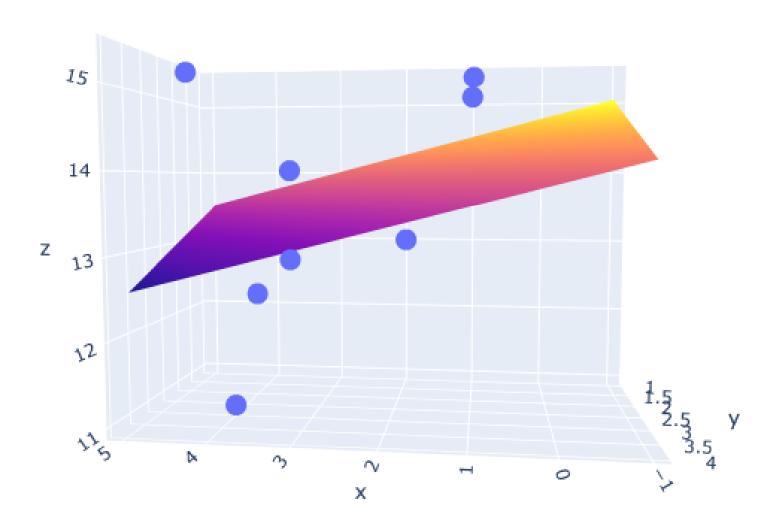
MAT A35 – Winter 2023 – UTSC Prof. Yun William Yu


Single variable linear regression

• Given samples of the dependent variable $y_1, ..., y_n$ at values of the independent variable $x_1, ..., x_n$, we want to find the linear model f(x) = mx + b such that $y_i \approx f(x_i)$, the "best-fit" line.

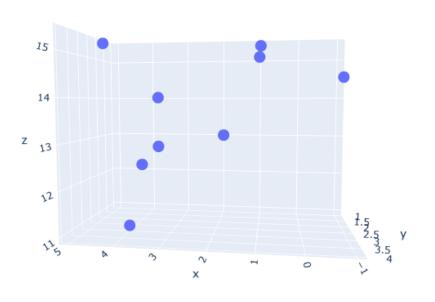


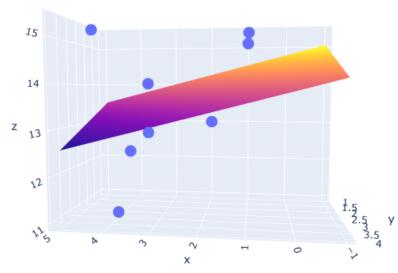
Two-variable linear regression


- What if we have multiple independent variables?
- Suppose we are measuring the water temperature in Lake Ontario, and want to know how the temperature varies as a function of location

3D Scatter Plot of temperatures

Best-fit plane


Two-variable linear regression


• Let x and y be the independent variables. Let z be the dependent variable.

Given samples z_1, \dots, z_n at values $(x_1, y_1), \dots, (x_n, y_n)$, we want the linear model

$$f(x,y) = m_1 x + m_2 y + b$$

such that $z_i \approx f(x_i, y_i)$, the "best-fit" plane.

Multilinear regression

• One independent variable, one dependent variable

Model:
$$f(x) = mx + b$$

Two independent variables, one dependent variable

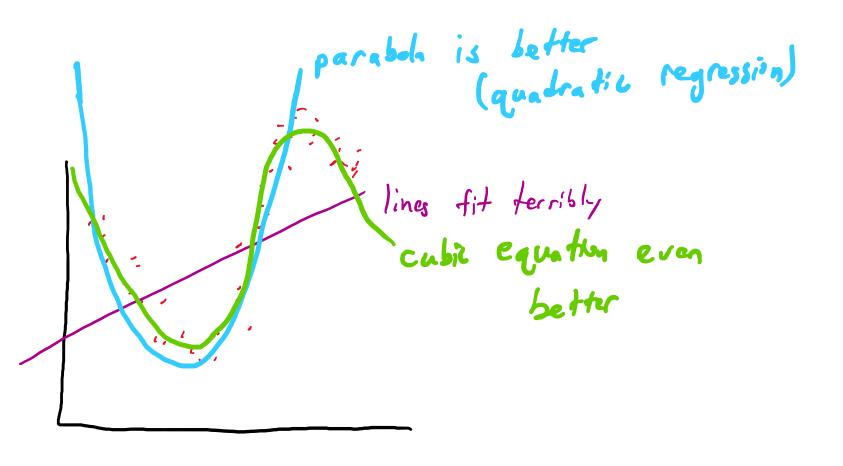
Model:
$$f(x,y) = m_1 x + m_2 y + b$$
 $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$
(=) $f([x]) = [m_1 \ m_2][x] + b$

• Many independent variables, one dependent variable

Model:
$$f\left(\begin{bmatrix} \times, \\ \vdots \\ \times n \end{bmatrix}\right) = \begin{bmatrix} m, & \dots & m_n \end{bmatrix} \begin{bmatrix} \times, \\ \vdots \\ \times n \end{bmatrix} + b$$
 $f: \mathbb{R}^n \to \mathbb{R}$

 Can also have many independent variables, many dependent...

Try it out


 You are measuring the temperature of Lake Ontario as a function of location. You get the following data:

× Longitude	Latitude	Temperature	
76.5 W	43.5 N	12.2	
76.5 W	43.9 N	12.1	
77.0 W	43.6 N	11.6	A: 12.06
77.0 W	43.8 N	11.5	B: 12.35
78.0 W	43.3 N	13.7	C: 12.54 D: 12.89
78.0 W	43.7 N	13.1	E: None of the
79.5 W	43.8 N	12.3	above
79.5 W	43.9 N	12.1	

• The GPS coordinates for the lake near Toronto are 43.6 N, 79.3 W. What do you predict the lake water temperature to be near Toronto?

Polynomial regression

What if our data doesn't look linear?

Different types of regression

Linear regression:

$$f(x) = mx + b$$
expression:
$$f(x,y) = m_1 \times f(x,y) = m_1 \times f(x,y)$$

Quadratic regression:

$$f(x) = m_2 x^2 + m_1 x + b$$

Cubic regression:

$$f(x) = m_3 x^3 + m_2 x^2 + m_1 x + b$$

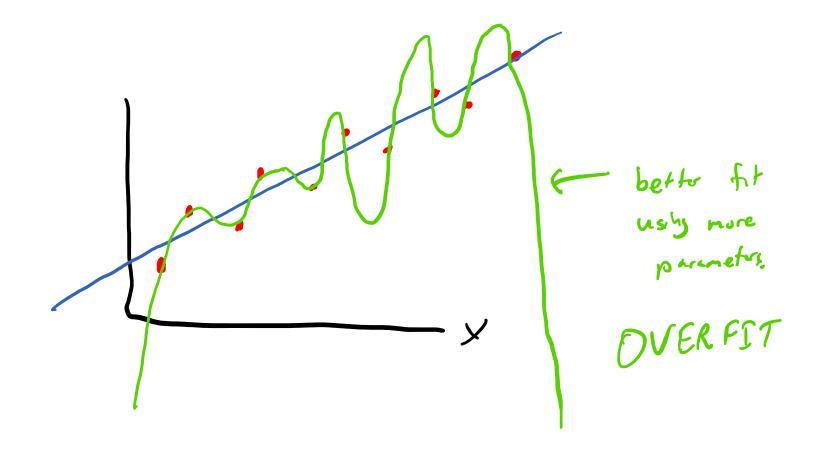
Polynomial regression of degree n:

$$f(x) = b + \sum_{i=1}^{\infty} m_i x^i$$

Exponential regression:

$$f(x) = b + m_0 e^{m_1 x}$$

Convert nonlinear to multilinear


Intuition guess

 Linear vs. Quadratic vs Cubic: which model will have smaller Mean Square Error for the following data:

Be careful about too many parameters

- The more parameters you have (e.g. in a polynomial regression), the better your mean squared error will be.
- However, sometimes, you will overfit to the data.
- John von Neumann: "with four parameters, I can fit an elephant, and with five I can make him wiggle his trunk".

Exponential regression

$$\begin{array}{lll}
c_{1} \times & c_{1} \times & c_{2} \times \\
c_{1} \times & c_{1} \times & c_{2} \times \\
c_{1} \times & c_{1} \times & c_{2} \times \\
c_{2} \times & c_{3} \times & c_{4} \times \\
c_{1} \times & c_{1} \times & c_{4} \times \\
c_{1} \times & c_{4} \times & c_{4} \times \\
c_{2} \times & c_{4} \times & c_{4} \times \\
c_{4} \times & c_{4} \times & c_{4} \times \\
c_{5} \times & c_{6} \times & c_{6} \times & c_{6} \times \\
c_{6} \times & c_{6} \times & c_{6} \times & c_{6} \times \\
c_{6} \times & c_{6} \times & c_{6} \times & c_{6} \times \\
c_{6} \times & c_{6} \times & c_{6} \times & c_{6} \times \\
c_{7} \times & c_{7} \times & c_{7} \times & c_{7} \times \\
c_{7} \times & c_{7} \times & c_{7} \times & c_{7} \times & c_{7} \times \\
c_{7} \times & c_{7} \times \\
c_{7} \times & c_{7} \times \\
c_{7} \times & c_{7} \times \\
c_{7} \times & c_{7} \times \\
c_{7} \times & c_{7} \times \\
c_{7} \times & c_{7} \times \\
c_{7} \times & c_{7} \times \\
c_{7} \times & c_$$

$$\times$$
 $f(x)$ \times $f(x)$

Power dependencies

Power dependencies