Introduction to Ordinary

 Differential Equations Lecture 7a: 2023-02-27MAT A35 - Winter 2023 - UTSC
Prof. Yun William Yu

What is a differential equation?

- An equation relates variables (e.g. x, y, z), and a solution is a set of values that makes the equation true.
- A differential equation relates variables and their derivatives, and a solution is a function that makes the equation true.

Notational reminder

- The most unambiguous way to write derivatives is to write both variables:
- $\frac{d y}{d x}$ is the derivative of y by the x variable.
- $\frac{d x}{d t}$ is the derivative of x by the t variable.
- Primes/apostrophes denote the derivative by x
- $y^{\prime}=\frac{d y}{d x}$
- $f^{\prime \prime}=\frac{d^{2} f}{d x^{2}}$
- $y^{(n)}=\frac{d^{n} y}{d x^{n}}$
- Dots above a variable denote a time-derivative by t
- $\dot{x}=\frac{d x}{d t}$
- $\ddot{y}=\frac{d^{2} y}{d t^{2}}$

ODEs vs PDEs

- Ordinary differential equations (ODEs) contain only one independent variable, so we have regular derivatives.
- Partial differential equations (PDEs) contain multiple independent variables, so we have partial derivatives.

Example of ODE

- Early on in an epidemic, the infection rate is proportional to the number of infected individuals.
- Let $I(t)$ be the number of infected individuals at time t

https://commons.wikimedia.org/wiki/File:COVID-19_Health_care_limit.svg

Example of PDE

- Heat diffusion has multiple spatia independent variables, and is normally modelled by a PDE.

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

https://commons.wikimedia.org/wiki/File: Heat_diffusion.png

Classify the following

- $x^{2}+5 x+y^{2}=5 x y$
- $x^{2}+5 y^{\prime}+y^{2}=4 x y^{\prime}$
- $t^{2} \dot{x}+5 t=x$
$\cdot\left(\frac{\partial z}{\partial x}\right)^{2}+y^{2} \frac{\partial z}{\partial y}-5 x$
$\cdot\left(\frac{\partial z}{\partial x}\right)^{3}+\frac{\partial z}{\partial y}+z^{2}=2$

A: Typical equation
B: ODE
C: PDF
D: ???
E: None of the above

Time vs. space

- Often, in practice, ODEs describe how a system changes with time as the only independent variable (whether we call the independent variable " x " or " t ")
- Often, PDEs include how a system changes with space, and sometimes also with time, giving multiple independent variables.

Specific types of ODEs

- General form of ODEs: $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0$
- First-order ODE: $F\left(x, y^{\prime}\right)=0$
- Pure-time ODE: $y^{\prime}=f(x)$
- Autonomous ODE: $F\left(y, y^{\prime}, \ldots, y^{(n)}\right)=0$
- Autonomous $1^{\text {stt-order: }} y^{\prime}=f(y)$
- Linear ODEs:
$a_{n}(x) y^{(n)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=q(x)$, where $a_{i}(x)$ and $q(x)$ are all functions of x.
- Linear $1^{\text {st }}$-order:
$y^{\prime}+p(x) y=q(x)$

Try it out: classify order of ODE
 - $y^{\prime \prime}+y^{\prime}+y^{2}=5$

- $y^{\prime}-1=x^{2}$
- $\frac{d x}{d y}\left(\frac{d^{2} x}{d y^{2}}+1\right)=y$
$\cdot y^{\prime \prime \prime \prime}+4 y^{\prime \prime}+4 y=x^{2}$
- $\dot{x}=t^{2}+1$

A: $1^{\text {st }}$ order
B: $2^{\text {nd }}$ order
C: $3^{\text {rd }}$ order
D: $4^{\text {th }}$ order
E: None of the above

Try it out: pure time/autonomous/neither

A: Autonomous
B: Pure-time
C: Both of the above
D: ???
E: None of the above

- $y^{\prime \prime}+y^{\prime}+y^{2}=5$
- $y^{\prime}-1=x^{2}$
- $\frac{d x}{d y}\left(\frac{d^{2} x}{d y^{2}}+1\right)=y$
$\cdot y^{\prime \prime \prime \prime}+4 y^{\prime \prime}+4 y=x^{2}$
- $\dot{x}=t^{2}+1$
- $y^{\prime}=0$

Try it out: linear vs nonlinear

- $y^{\prime \prime}+y^{\prime}+y^{2}=5$
- $y^{\prime}-1=x^{2}$
- $\frac{d x}{d y}\left(\frac{d^{2} x}{d y^{2}}+1\right)=y$
- $y^{\prime \prime \prime \prime}+4 y^{\prime \prime}+4 y=x^{2}$
- $\dot{x}=t^{2}+1$

A: Linear
B: Nonlinear
C: Both of the above
D: ???
E : None of the above

